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ABSTRACT
In continuous-time system identification, refined instrumental variable methods are
widely used in open and closed-loop settings. Although their robustness and per-
formance are well documented for stable systems, these estimators are not reliable
for estimating unstable continuous-time models. The main difficulty we encounter
in modeling unstable systems with refined instrumental variables is that the filtered
regressor and instrument vectors, as well as the filtered output, become severely
ill-conditioned if the model is unstable during the iterative process. In this work,
we propose a solution to this problem by including a tailor-made all-pass filter in
the prefiltering step. This approach is used for obtaining an extension of the least-
squares state-variable filter method, as well as extensions for the refined instrumental
variable method for continuous-time systems (RIVC) and its simplified embodiment
(SRIVC), that admit the identification of unstable systems and are shown to mini-
mize the prediction error upon convergence and as the sample size goes to infinity.
In addition, several implementations of these methods are proposed depending on
the intersample behavior of the input (zero and first-order hold, multisine and arbi-
trary). The particular case when the plant has integral action is explicitly considered
in this work. In an indirect system identification setting, an extension of the closed-
loop version of the SRIVC method is also proposed and discussed in detail. Monte
Carlo simulations are used to assess the performance of our methods.

KEYWORDS
System identification; continuous-time systems; instrumental variables; unstable
systems

1. Introduction

The greatest difficulty surrounding the estimation of unstable linear and time-invariant
models is that most system identification algorithms, directly or indirectly, use pre-
dictors or regressors that become unstable during the identification process. An il-
lustrating example of this problem is encountered in the Simplified Refined Instru-
mental Variable method for Continuous-time systems (SRIVC, Young and Jakeman
(1980)) when input and output data are used for identification. This estimator has
been proven to be generically consistent (Pan, González, Welsh, & Rojas, 2020) and
asymptotically efficient (Pan, Welsh, González, & Rojas, 2020b) under mild condi-
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tions, including the assumption that the true system and the model at every iteration
of the algorithm are asymptotically stable. The stability of the model iterates is needed
for the filtering process that must be performed: since the input and output signals
are prefiltered by auxiliary estimates of the true system, such a procedure becomes
severely ill-conditioned if these estimates are unstable. In this work, we are concerned
about modeling unstable continuous-time systems in a closed-loop setting.

Closed-loop system identification has mostly been studied in the discrete-time do-
main (Forssell & Ljung, 1999; Gilson, Garnier, Young, & Van den Hof, 2011; Van den
Hof, 1998). Nevertheless, directly identifying continuous-time systems in closed-loop
is known to have several advantages over discrete-time identification, such as a greater
physical insight on the system parameters and controller tuning, ease of incorporating
non-uniform and fast sampling, and more flexibility in the proposed model struc-
ture (Garnier & Young, 2014). In closed-loop continuous-time system identification,
different algorithms are suggested according to whether the controller is known or
not. If only input and output data are known, then one approach to direct closed-
loop continuous-time system identification is to apply the RIVC or SRIVC methods
(Young & Jakeman, 1980). If the controller is not known but reference signal data are
available, Young, Garnier, and Gilson (2009) have provided two two-stage algorithms
that are suggested to be consistent but not asymptotically efficient, and convergence is
not guaranteed for unstable plants (Young, 2012, Page 274, Chapter 9). A three-stage
method has also been proposed in Young et al. (2009), but it is not applicable when
the plant is unstable. On the other hand, if the controller is linear and time-invariant
and known a priori, then an attractive approach is to apply the CLRIVC or CLSRIVC
method as proposed in Chapter 5 of Garnier and Wang (2008). In such case, the idea is
to formulate the instrument vector by prefiltering the reference signal with estimates
obtained in the previous iteration of the closed-loop transfer function multiplied by
the open-loop denominator transfer function. Again, these methods are not suitable
for identifying unstable systems.

Several extensions of closed-loop methods suffer from the same issue. Ni, Gilson,
and Garnier (2012) developed an instrumental variable-based method for estimat-
ing Hammerstein-Wiener models, while Chen, Gilson, Agüero, Garnier, and Schorsch
(2014) adapted the CLRIVC method to estimate continuous-time systems with non-
uniformly sampled data. Victor, Diudichi, and Melchior (2017) proposed using instru-
mental variables for closed-loop identification in an errors-in-variables framework, and
Padilla, Garnier, Young, and Yuz (2017) explored recursive identification. Recently,
González, Rojas, Pan, and Welsh (2021) extended the applicability of both SRIVC
and CLSRIVC estimators for arbitrary inputs, and these estimators were shown to
lose their consistency if the intersample behavior of the system input is not taken into
account. All the methods mentioned above are based on refined instrumental variables
and thus cannot be directly applied if the open-loop system is unstable.

In contrast to the aforementioned work, the main contributions of this work are the
following:

• We present an extension of the least-squares state-variable filter (LSSVF)
method that can serve as an initialization step for any subsequent identifica-
tion method for unstable continuous-time systems.
• We propose an extension to the SRIVC and RIVC methods for estimating

continuous-time unstable systems in Box-Jenkins (BJ) and output error (OE)
model structures, respectively. These refinements admit zero and first-order hold
(ZOH and FOH) input signals, as well as continuous-time multisines and arbi-
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trary inputs whose intersample behaviors are known.
• We discuss how to handle unstable systems for indirect closed-loop continuous-

time system identification using the CLSRIVC method.
• We provide variants of the SRIVC, RIVC and CLSRIVC estimators that can

deal with plants with integral action. This type of system is a limit case that is
not adequately covered in the extensions previously proposed.
• We test the proposed methods via extensive numerical simulations.

The rest of this work is organized as follows. In Section 2 we present the framework
of our work and state the identification problem. Section 3 introduces the RIVC and
SRIVC estimators, while Section 4 contains our main contribution, namely, the deriva-
tion of the RIVC and SRIVC estimators that admit unstable continuous-time models.
Section 5 studies the applicability of our approach to indirect closed-loop continuous-
time system identification methods, and Section 6 covers identification with integral
action in the plant. In Section 7, extensive simulations are performed in order to test
the proposed estimators under different experimental conditions, and we provide con-
cluding comments in Section 8. Proofs of the theoretical results of this article can be
found in the appendix.

Notation: The forward-shift operator is denoted by q and satisfies qf(tk) = f(tk+1),
while the Heaviside operator is denoted by p and satisfies pg(t) = dg(t)/dt. The symbol
{G(p)x(t)}t=tk (or [G(p)x(t)]t=tk in the vector-valued case) means that the continuous-
time signal x(t) is filtered through the continuous-time transfer function G(p) and later
sampled at t = tk. On the other hand, the notation G(p)x(tk) implies that the signal
x(tk) is interpolated using either a ZOH or FOH, and the resulting output of the filter
is evaluated at tk. The Delta-domain equivalent of G(p) = B(p)/A(p) is denoted as
G∆(δ) = B∆(δ)/A∆(δ) and is a function of the delta operator δ.

2. Problem formulation

We begin with an analysis of the direct closed-loop system identification problem.
Consider the proper, linear and time-invariant continuous-time system

x(t) =
B∗(p)

A∗(p)
u(t).

The system numerator and denominator polynomials are assumed to be coprime with
orders m∗ and n∗, respectively, i.e.,

B∗(p) = b∗m∗pm
∗

+ b∗m∗−1p
m∗−1 + · · ·+ b∗1p+ b∗0,

A∗(p) = a∗n∗pn
∗

+ a∗n∗−1p
n∗−1 + · · ·+ a∗1p+ 1, (1)

where m∗ ≤ n∗, and the system parameter vector is described by

θ∗ :=
[
a∗1, a∗2, . . . , a∗n∗ , b∗0, b∗1, . . . , b∗m∗

]
. (2)

A noisy measurement of the sampled output is retrieved for identification:

y(tk) = x(tk) +
C∗(q)

D∗(q)
e(tk),
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where e(tk) describes a zero-mean white noise stochastic process of finite variance, and

C∗(q) = 1 + c∗1q
−1 + c∗2q

−2 + · · ·+ c∗m∗
c
q−m

∗
c ,

D∗(q) = 1 + d∗1q
−1 + d∗2q

−2 + · · ·+ d∗n∗
d
q−n

∗
d ,

where n∗d ≥ m∗c . The parameters in the noise model can be described by the vector

η∗ :=
[
c∗1, c∗2, . . . , c∗m∗

c
, d∗1, d∗2, . . . , d∗n∗

d

]
. (3)

Throughout this work, the transfer function G∗(p) := B∗(p)/A∗(p) is assumed to be
unstable. That is, at least one zero of the polynomial A∗(p) is in the closed right-
half of the complex plane. We also assume that the discrete-time filter H∗(q) :=
C∗(q)/D∗(q) is stable and minimum-phase. Recall that by the spectral factorization
theorem (Papoulis & Pillai, 2002), any colored noise with rational and integrable
spectrum can be described by a noise white stochastic process filtered by a stable and
minimum-phase transfer function.

Our goal is to estimate the transfer function G∗(p) and the noise model H∗(q) using
sampled data. We require N samples of input and output data {u(tk), y(tk)}Nk=1, where
the sampling instants {tk}Nk=1 are assumed to be evenly spaced in time with a sampling
period h. Since unstable systems are usually operated in closed-loop, data are assumed
to be generated in a closed-loop that stabilizes the plant. However, at this stage, no
information about the closed-loop is assumed. We further assume that the intersample
behavior of the input is known but can be arbitrary (i.e., it is not necessarily perfectly
described via ZOH or FOH devices). This aspect, along with the nature of the transfer
functions, separates this analysis from the standard discrete-time approaches (Forssell
& Ljung, 1999), which typically assume that the intersample behavior of the signals
has already been addressed prior to the description of the systems.

The model we consider is the following:

y(tk) =

{
B(p)

A(p)
u(t)

}
t=tk

+
C(q)

D(q)
ε(tk), (4)

where the signal ε(tk) is denoted as the residual, and the transfer functions G(p) =
B(p)/A(p) and H(q) = C(q)/D(q) are described by polynomials that are parameter-
ized1 by vectors θ and η of the same form as (2) and (3), respectively. For simplicity,
we assume that the system and noise models exactly parameterize the true system,
i.e., n = n∗, m = m∗, mc = m∗c and nd = n∗d, although this condition can be relaxed
without major setbacks on the description of our algorithms. The first goal is to adapt
the SRIVC and RIVC methods to handle unstable systems, and then to propose ex-
tensions to these methods to be used in an indirect closed-loop system identification
setting that will be described more carefully in Section 5.

3. The RIVC and SRIVC methods

The RIVC estimator is an iterative instrumental variable method for the identification
of hybrid BJ models, in which the plant is described by a continuous-time transfer

1In some sections of this work, we will write A(p,θ) instead of A(p), or C(q,η) instead of C(q), to show

explicit dependence of the model polynomials on the unknown parameters θ or η, respectively.
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function and the noise model is discrete in time. Each iteration of the procedure
consists in a noise model estimation step, followed by the system parameter estimation
step using instruments and regressors that are computed from a bank of prefilters that
depend on the current system and noise models.

The RIVC method seeks to minimize a least-squares criterion of the following error
function:

ε(tk) =
D(q)

C(q)

(
y(tk)− B(p)

A(p)
u(tk)

)
. (5)

In the continuous-time system identification literature, the expression in (5) is called
the generalized equation error (GEE, Young (1981)), and it can be interpreted as the
one-step ahead prediction error for BJ models (Ljung, 1999). The GEE can also be
written as

ε(tk) = yf (tk) + a1y
(1)
f (tk) + · · ·+ any

(n)
f (tk)− b0uf (tk)− · · · − bmu(m)

f (tk),

where

y
(i)
f (tk) =

D(q)

C(q)

pi

A(p)
y(tk), i = 0, . . . , n; (6a)

u
(l)
f (tk) =

D(q)

C(q)

pl

A(p)
u(tk), l = 0, . . . ,m. (6b)

Thus, instead of a standard linear regression, we have derived a pseudo-linear regres-
sion2 (Solo, 1978) of the form

yf (tk) = ϕ>f (tk)θ + ε(tk), (7)

where

ϕf (tk) =
D(q)

C(q)

[
− p

A(p)
y(tk), . . . ,− pn

A(p)
y(tk),

1

A(p)
u(tk), . . . ,

pm

A(p)
u(tk)

]>
. (8)

Since 1/A(p) andD(q)/C(q) are unknown, as they depend on the unknown parameters,
the RIVC method proposes to estimate them via iterations. To this end, assume that
the estimate at the j-th iteration, θj , is known, with its associated model Gj(p) :=
Bj(p)/Aj(p). First, an estimate of the noise model Cj+1(q)/Dj+1(q) with parameter
vector ηj+1 is obtained by fitting an ARMA model to the estimated noise sequence
y(tk) − Gj(p)u(tk). This estimation step can be performed using standard discrete-
time methods such as PEM (Ljung, 1999) or IVARMA (Young, 2006). Afterwards,
the filtering in (6) is done with the inverse of the noise model previously obtained
and continuous-time transfer functions of the form pl/Aj(p). Lastly, an instrumental

2Pseudo refers to the fact that the parameter vector θ is also present in the regressor vector ϕf (tk) and the

filtered output yf (tk). This dependence on the parameter vector is made explicit in our notation only when
necessary.
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variable approach is used to form the next iterate of the system parameters:

θj+1 =

[
N∑
k=1

ϕ̂f (tk)ϕ>f (tk)

]−1 [ N∑
k=1

ϕ̂f (tk)yf (tk)

]
, (9)

where the filtered instrument vector, ϕ̂f (tk), is given by

ϕ̂f (tk) =
Dj+1(q)

Cj+1(q)

[
− pBj(p)

A2
j (p)

u(tk), . . . ,−p
nBj(p)

A2
j (p)

u(tk),
1

Aj(p)
u(tk), . . . ,

pm

Aj(p)
u(tk)

]>
,

(10)
and the filtered regressor vector ϕf (tk) is obtained as in (8) with Aj(p), Cj+1(q) and
Dj+1(q) in place of A(p), C(q) and D(q) respectively. If the noise model is not of
interest, then the simplified RIVC estimator (SRIVC) can be computed by setting
Cj(q) = Dj(q) = 1 and computing (9) until convergence.

The initialization of the RIVC and SRIVC procedures is an important step that
needs discussion. Most often, a least-squares state-variable filter (LSSVF) method is
applied (Young, 1966), which consists in proposing a fixed filter 1/A1(p) and obtaining
the least-squares solution

θLSSV F =

[
N∑
k=1

ϕf (tk)ϕ>f (tk)

]−1 [ N∑
k=1

ϕf (tk)yf (tk)

]
,

where C(q) and D(q) have been set to one in both (6) and (8). The fixed filter 1/A1(p)
should be designed based on prior knowledge about the system, and it is recommended
to be set as close to 1/A∗(p) as possible (Pan, Welsh, González, & Rojas, 2020a).

One shortcoming that all refined instrumental variable estimators have is that they
do not deliver reliable estimates if the plant we are identifying is unstable. This is due
to the filtering procedure for generating the filtered output, regressor and instrument
vectors, i.e., they require filtering by 1/Aj(p), which would be unstable if an unstable
transfer function is sought.

Remark 1. Recently, it has been proven that a misspecified intersample behavior of
the input signal for the generation of the regressor and instrument vectors affects the
consistency and asymptotic efficiency of the SRIVC method (González et al., 2021;
Pan, González, et al., 2020; Pan, Welsh, González, & Rojas, 2020b). In this work we
will consider the optimal implementation of these methods, that is, we assume that
the exact continuous-time input is used for constructing the filtered regressor and
instrument vectors:

ϕf(tk)=
Dj+1(q)

Cj+1(q)

[ −p
Aj(p)

y(tk), . . . ,
−pn

Aj(p)
y(tk),

{
1

Aj(p)
u(t)

}
t=tk

, . . . ,

{
pm

Aj(p)
u(t)

}
t=tk

]>
,

ϕ̂f (tk)=
Dj+1(q)

Cj+1(q)

[
−pBj(p)

A2
j (p)

u(t), . . . , −p
nBj(p)

A2
j (p)

u(t),
1

Aj(p)
u(t), . . . ,

pm

Aj(p)
u(t)

]>
t=tk

.

(11)
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4. RIVC and SRIVC for unstable systems

In this section, we derive extensions of the RIVC, SRIVC, and LSSVF methods that
can identify stable or unstable continuous-time plants. We first study the optimal one-
step-ahead predictor for a BJ model structure with unstable continuous-time systems.
We then propose the filtered regressor and output vectors to be used for the extension
of the RIVC and SRIVC methods, and present an adequate initialization procedure
based on the LSSVF method. Finally, we study the instrument vector constructed
such that a Prediction Error Method (PEM) estimate is obtained upon convergence.

4.1. One-step-ahead predictor and a refined least-squares method

The RIVC algorithm implicitly uses the predictor

ŷ(tk|θ) =
D(q)

C(q)

{
B(p)

A(p)
u(t)

}
t=tk

+

(
1− D(q)

C(q)

)
y(tk).

If we encounter an unstable open-loop system, this predictor is not feasible for compu-
tations within the RIVC paradigm. Thus, our first goal is to extend the applicability of
this estimator to the unstable system case. This extension must admit ZOH and FOH
input signals, as well as arbitrary input signals whose intersample behavior is known,
such as in the case of continuous-time multisines or band-limited signals (González,
Rojas, Pan, & Welsh, 2021; González et al., 2021).

Before we derive the stable predictor, we define some polynomials of interest. The
denominator of the discrete-time equivalent of 1/A(p) is denoted as Ad(q), and it is
assumed to be of the form

Ad(q) = 1 + ad1q
−1 + · · ·+ adnq

−n.

This polynomial can be written in terms of the coefficients of A(p) via the following
relation:

1 + ad1q
−1 + · · ·+ adnq

−n = q−n det
(
qI− exp(Ah)

)
, (12)

where

A =


−an−1

an
. . . − a1

an
− 1

an

1 0 0
. . .

...
0 1 0

 . (13)

We also consider the decomposition Ad(q) = Ad,s(q)Ad,a(q), where Ad,s(q) denotes the
stable part of Ad(q) and Ad,a(q) its antistable part. In particular, we write

Ad,s(q) = 1 + ad,s1 q−1 + · · ·+ ad,sns
q−ns ,

Ad,a(q) = 1 + ad,a1 q−1 + · · ·+ ad,ana
q−na ,

where ns + na = n and ad,ana is assumed to be different from zero without loss of
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generality. Note that with the notation

ãd,sk :=


1, k = 0

ad,sk , 1 ≤ k ≤ ns
0, otherwise;

ãd,ak :=


1, k = 0

ad,ak , 1 ≤ k ≤ na
0, otherwise,

the following relation holds:

adk =

n∑
j=0

ãd,sj ãd,ak−j . (14)

Furthermore, we denote by Ad,a(q) the monic polynomial whose zeros are those of
Ad,a(q) reflected into the unit disc:

Ad,a(q) = 1 +
ad,ana−1

ad,ana

q−1 + · · ·+ ad,a1

ad,ana

q−na+1 +
1

ad,ana

q−na .

Our approach relies on studying the following model structure

y(tk) =

{
B(p)

A(p)
u(t)

}
t=tk

+
C̃(q)

D̃(q)
ε(tk), (15)

where

C̃(q) = C(q)Ad,a(q), and D̃(q) = D(q)Ad,a(q). (16)

A model structure with a tailor-made noise model as in (15) was introduced for
discrete-time system identification in Forssell and Ljung (2000), and it has been used
for identifying unstable systems with the Weighted Null-Space Fitting method (Gal-
rinho, Rojas, & Hjalmarsson, 2016), as well as for ARX modeling (Galrinho, Everitt, &
Hjalmarsson, 2017). To the best of our knowledge, this approach has not been applied
in continuous-time system identification until now.

With the previous definitions in mind, we are ready to derive a stable predictor and
its properties for this case. In the sequel, we will explicitly write the dependence of
the polynomials and vectors on the parameter vectors θ and η.

Proposition 4.1. Consider the model structure (15), where ε(tk) is assumed to be
white noise. The optimal one-step-ahead predictor is given by

ŷ(tk|θ,η) =
D̃(q,η,θ)

C̃(q,η,θ)

{
B(p,θ)

A(p,θ)
u(t)

}
t=tk

+

(
1− D̃(q,η,θ)

C̃(q,η,θ)

)
y(tk). (17)

Proof. See Appendix A.

The difference between Proposition 4.1 and the standard result for discrete-time
models (see, e.g., Chapter 3 of Ljung (1999)) is that the plant is a continuous-time
transfer function. Thus, the cascading of discrete-time and continuous-time transfer
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functions must be done with caution: the model output must be treated as a discrete-
time signal instead of a continuous-time one. Nevertheless, the proof follows the same
lines as its discrete-time version.

Similar to the discrete-time case, minimizing the 2-norm of the prediction error of
the model structure in (15) can be shown to be asymptotically equivalent to minimizing
the 2-norm of the prediction error for the model structure (4).

Proposition 4.2. When applying the prediction error method to model structures (4)
and (15), the resulting estimates of the two model structures will asymptotically (as
N →∞) be the same.

Proof. The proof follows the same lines as the proof of Proposition 1 of Forssell and
Ljung (2000).

Proposition 4.1 provides a path to writing a modification of the GEE that has stable
filters, which is essential for computing the RIVC estimate. We write the residual ε(tk)
as

ε(tk) = y(tk)− ŷ(tk|θ,η) (18)

=
D̃(q,η,θ)

C̃(q,η,θ)
A(p,θ)

1

A(p,θ)
y(tk)− D̃(q,η,θ)

C̃(q,η,θ)

{
B(p,θ)

A(p,θ)
u(t)

}
t=tk

. (19)

Thus, the regression equation can now be written as

yf,uns(tk) = ϕ>f,uns(tk)θ + ε(tk), (20)

where

yf,uns(tk) =
D̃(q,η,θ)

C̃(q,η,θ)

1

A(p,θ)
y(tk), (21)

ϕ>f,uns(tk)=
D̃(q,η,θ)

C̃(q,η,θ)

[
−p

A(p,θ)
y(tk), . . . ,

−pn

A(p,θ)
y(tk),

{
1

A(p,θ)
u(t)

}
t=tk

, . . . ,

{
pm

A(p,θ)
u(t)

}
t=tk

]
.

(22)

Note that the goal of this description is to render filtered signals that are bounded,
despite possible instabilities due to filtering by 1/A(p,θ). Before deriving the proposed
extension for the RIVC estimator (which requires deriving a tailor-made filtered instru-
ment vector), a refined least-squares method will be introduced. Assuming knowledge
of an initial model estimate, the refined least-squares method we study consists of four
steps:

(1) Based on the j-th iteration of the system model (i.e., θj), fit an ARMA model

v(tk) = C(q,ηj+1)
D(q,ηj+1)e(tk) to the estimated colored noise sequence

v̂(tk) =
Ad,a(q,θj)

Ad,a(q,θj)

(
y(tk)−

{
B(p,θj)

A(p,θj)
u(t)

}
t=tk

)
. (23)

(2) Form the filtered output and regressor from (21) and (22), where η and θ are
set to ηj+1 and θj , respectively.
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(3) Compute the estimate

θj+1 =

[
N∑
k=1

ϕf,uns(tk)ϕ>f,uns(tk)

]−1 [ N∑
k=1

ϕf,uns(tk)yf,uns(tk)

]
. (24)

(4) Go back to step (1) and repeat until convergence.

Several implementation issues regarding the filtering process are discussed next.

(a) The discrete-time filtering in (23) is needed for stability, since the model estimate
will usually be unstable. The unstable poles of the model estimate are canceled
with the zeros of Ad,a(q,θj), rendering a signal v̂(tk) that is quasi-stationary if
the input is quasi-stationary (Ljung, 1999). Note that the pole-canceling filter
only affects the gain of the spectrum of v̂(tk), since it is designed to be all-pass.
Moreover, a byproduct of Proposition 4.2 is that other pole-canceling filters can
be proposed, with the same prediction error being minimized asymptotically, as
long as the discrete-time filters are all-pass.

(b) Poles of model estimates that are on the imaginary axis are not canceled with
our approach. This is not an important setback in a practical setting if the true
system does not contain integrators or undamped oscillatory modes, since cases
where a pole of the model is found exactly on the imaginary axis occur with
probability zero. In Section 6, we study two different approaches for the identi-
fication of systems with integral effect that are complementary to the methods
presented in this section.

(c) The input signal filtering can be done entirely in discrete-time for ZOH or FOH
inputs. In practice, this is done by transforming the continuous-time transfer
function into its ZOH or FOH equivalent, multiplying the transfer functions
in the q-domain, and later computing the filtered signal via discrete-time fil-
tering. This approach is needed for the cancellation of unstable poles present
in 1/A(p,θj) with the zeros in Ad,a(q,θj). Note that for such types of inputs,
discrete-time filtering (i.e., via ZOH or FOH-equivalent transfer functions) is
commonly used for computing the regressor and filtered output (Garnier &
Wang, 2008).

(d) For continuous-time multisine input signals, it is sufficient to compute the
continuous-time filtering in (22) assuming steady state (which also results in
a multisine), and later performing the discrete-time filtering by the inverted
noise model assuming a ZOH or FOH intersample behavior for the signals
{[pl/A(p,θj)]u(t)}t=tk , l = 0, 1, . . . ,m. Note that such inputs are rarely encoun-
tered if there is noise present in the loop, which is the case for most practical
applications.

(e) The unstable poles of the bank of continuous-time filters are not canceled by
Ad,a(q,θj) when the input is an arbitrary continuous-time signal. To solve this
issue, we propose modifying the oversampling technique suggested in González
et al. (2021), which obtains accurate estimates with SRIVC and CLSRIVC under
arbitrary inputs by oversampling the input by a factor S � 1 and performing
the filtering in the Delta domain (Middleton & Goodwin, 1990). The previously
proposed method for solving the instability problem using the noise model in
(16) does not work for this case, since the poles of the equivalent fast-sampled
Delta description do not cancel with the zeros of Ad,a(q,θj). The solution is
described in detail in Appendix B.
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Remark 2. It can be shown that the estimator presented in (24) is asymptotically
biased, and does not minimize the sum of squares of the prediction errors. However, it is
useful for understanding the refinement nature of the instrumental variable methods
that we introduce in the next subsection, and its use can be justified if there are
computational constraints that limit the use of the other methods we study in this
article. Furthermore, one iteration of the estimator presented in (24) with j = 1,
C2(q) = D2(q) = 1 and a fixed 1/A1(p) polynomial, provides an extension of the
LSSVF method that can admit an unstable state variable filter 1/A1(p). We propose
this extended LSSVF method as an alternative for initializing refined instrumental
variable methods for unstable systems.

In the sequel, we eliminate the asymptotic bias of the refined LS method by construct-
ing the instrument vector that delivers a PEM estimate for this situation, which leads
to novel refined instrumental variables methods that admit unstable models.

4.2. Instrument vector

We are interested in estimators that are computed iteratively using instrumental vari-
ables:

θj+1 =

[
N∑
k=1

ϕ̂f,uns(tk)ϕ>f,uns(tk)

]−1 [ N∑
k=1

ϕ̂f,uns(tk)yf,uns(tk)

]
. (25)

Here the filtered instrument vector is denoted by ϕ̂f,uns(tk), which uses filters that
depend on the estimate of the previous iteration, θj , and the current noise model
estimate, ηj+1.

Lemma 4.3. Consider the iterative method in (25) but where the noise model is fixed,
and assume that at the converging point (i.e., limj→∞ θj) the matrix

1

N

N∑
k=1

ϕ̂f,uns(tk)ϕ>f,uns(tk)

is non-singular, where the instrument vector, ϕ̂f,uns(tk), is given by

ϕ̂f,uns(tk) =
∂

∂θ
ŷ(tk|θ,η)

∣∣∣∣
θ=θj

, (26)

with ŷ(tk|θ,η) as in (17). If the algorithm in (25) converges as j →∞ (with N fixed
and finite), then the converging point minimizes the sum of squares of the residuals.

Proof. See Appendix C.

Remark 3. If the model estimates at each iteration are stable, then Lemma 4.3
applied to (7) leads to the RIVC estimator with instrument vector given by (10), or
(11) in the arbitrary input case. This supports the findings of Young (2015), who
suggests that the RIVC estimator provides a maximum likelihood estimate for hybrid
BJ models with filtered Gaussian noise.
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We introduce the estimator computed by (25), where ϕ̂f,uns(tk) is computed from
(26), as the extended RIVC estimator for stable and unstable continuous-time systems.
Naturally, by fixing the noise model to C(q) = D(q) = 1, this procedure computes
the extended SRIVC estimator. An implementation diagram for the extended RIVC
estimator can be found in Figure 1. Note that the gradient step can also be performed
with the residual ε(tk) instead of the one-step predictor ŷ(tk|θ,η), due to the relation
between these signals in (18).

-u(tk), y(tk)

- -θj
v̂(tk)← Ad,a(q,θj)

Ad,a(q,θj)

(
y(tk)− Bj(p)

Aj(p)
u(tk)

)

?
v̂(tk)

ARMA
Estimation

?
ηj+1

-u(tk), y(tk)

-- θj

Filter u(tk) and y(tk) by
D(q,ηj+1)
C(q,ηj+1)

Ad,a(q,θj)

Ad,a(q,θj)

[
1

Aj(p) , . . . ,
pn

Aj(p)

]

? ?

-q
-q

ϕf,uns(tk) yf,uns(tk)

ϕf,uns(tk)

yf,uns(tk)

ε(tk)←yf,uns(tk)−ϕ>f,uns(tk)θj

?
ε(tk)

- -θj

Gradient
Computation

-ϕ̂f,uns(tk)

Refined
IV

-θj+1

θj is updated to θj+1 in the next iteration

Figure 1. Implementation of the extended RIVC algorithm for when the input has a ZOH or FOH behavior.
Note that in this case, the filtering process is done in discrete-time by discretizing the bank of continuous-

time filters pi/Aj(p) and cascading them with the all-pass filter and inverse noise model. The algorithm is

initialized with θj = θ1 (i.e., j = 1). Note that the extended SRIVC algorithm follows from omitting the
ARMA estimation step and using D(q) = C(q) = 1.

The computation of (26) is not direct due to the mixture of continuous and discrete-
time transfer functions. For simplicity, we will only analyze the case when the input
has a ZOH or FOH intersample behavior. For the numerator components present in
θ, the derivative can be directly evaluated as

∂

∂bl
ŷ(tk|θ,η) =

D̃(q,η,θ)

C̃(q,η,θ)

pl

A(p,θ)
u(tk), l = 0, 1, . . . ,m.

In other words, the last m + 1 components of ϕ̂f (tk,θ) coincide with those of the
regressor ϕf (tk,θ). The first n components of ϕ̂f (tk,θ), associated with the denom-
inator polynomial of the model, are more difficult to compute. In general, they are
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-
r(t) +

−6

n -
e(t)

C(p) -
u(t)

G∗(p) -+

v(t)

n?+ -
y(t)

��àa
tk

-
y(tk)

Figure 2. Block diagram for the closed-loop framework.

given by

∂

∂al
ŷ(tk|θ,η) =

D(q,η)

C(q,η)

∂

∂al

{
Ad,a(q,θ)

Ad,a(q,θ)

({
B(p,θ)

A(p,θ)
u(t)

}
t=tk

−y(tk)

)}
, l = 1, 2, . . . , n.

(27)
For most practical applications, computing the derivative via numerical approximation
is sufficient. If a gradient is needed in explicit form, the computations are provided in
Appendix D.

5. The extended CLSRIVC method

In this section, we extend the ideas of Section 4 to study indirect closed-loop
continuous-time system identification when the open-loop plant is unstable. We will
not estimate the noise model in this case, although our approach can also be extended
to handle that scenario by modifying the CLRIVC method in Chapter 5 of Garnier
and Wang (2008). Let us now consider the closed-loop scheme in Fig. 2, where

y(t) =
G∗(p)C(p)

1 +G∗(p)C(p)
r(t) +

1

1 +G∗(p)C(p)
v(t),

u(t) =
C(p)

1 +G∗(p)C(p)
r(t)− C(p)

1 +G∗(p)C(p)
v(t).

In this framework, v(t) is a stochastic process that is assumed to be constant between
sampling instants3. The model estimates of each iteration of the CLSRIVC estima-
tor using sampled data are given by (9), but where the instrument vector is now
constructed with filtered versions of the reference signal:

ϕ̂f (tk) =

[
−pTo,j(p)
Aj(p)

r(t), . . . ,
−pnTo,j(p)
Aj(p)

r(t),
Suo,j(p)

Aj(p)
r(t), . . . ,

pmSuo,j(p)

Aj(p)
r(t)

]>
t=tk

,

(28)
with the sensitivity functions To,j(p) and Suo,j(p) being defined by

To,j(p) :=
Gj(p)C(p)

1 +Gj(p)C(p)
; Suo,j(p) :=

C(p)

1 +Gj(p)C(p)
.

3This formulation, which results in a mixture between continuous-time and discrete-time signals, is commonly
used in the closed-loop continuous-time system identification literature; see e.g. Chapter 5 of Garnier and Wang

(2008).
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Note that, following Remark 1, in (28) we consider a generalized version of the
CLSRIVC estimator where the reference is allowed to be any arbitrary continuous-time
signal.

-u(tk), y(tk)

-- θj

Filter u(tk) and y(tk) by
Ad,a(q,θj)

Ad,a(q,θj)

[
1

Aj(p) , . . . ,
pn

Aj(p)

] -

-

ϕf,uns(tk)

yf,uns(tk)

Filter r(tk) by
Ad,a(q,θj)

Ad,a(q,θj)

[
−pTo,j(p)
Aj(p) , . . . , −p

nTo,j(p)
Aj(p) ,

Suo,j(p)
Aj(p) , . . . ,

pmSuo,j(p)
Aj(p)

]-r(tk)

-- θj
-ϕ̂f,uns(tk)

Refined
IV

-θj+1

θj is updated to θj+1 in the next iteration

Figure 3. Implementation of the extended CLSRIVC algorithm for when the input has a ZOH or FOH
behavior. The algorithm is initialized with θj = θ1 (i.e., j = 1).

The proposed solution to the instability problem in CLSRIVC is illustrated in Figure
3. The idea is to use yf,uns(tk,θj) and ϕf,uns(tk,θj) as in (21) and (22), respectively
(but with Cj(q) = Dj(q) = 1), and to construct the modified instrument vector

ϕ̂f,uns(tk) =
Ad,a(q,θj)

Ad,a(q,θj)
ϕ̂f (tk), (29)

where ϕ̂f (tk) is defined in (28). Again, the iterations are given by (25). If the input or
reference are arbitrary signals, the filtering procedure follows the same ideas discussed
in Appendix B. For the case of ZOH or FOH reference and input signals, which implies
that there exists a hold device between the controller and the plant4, Lemma 5.1
characterizes the asymptotic behavior of the estimator.

Lemma 5.1. Consider the extended CLSRIVC method with filtered output (21), fil-
tered regressor vector (22) and filtered instrument vector (29), and assume that the
reference, input, and noise are ZOH or FOH signals and are stationary. Furthermore,
assume that the extended CLSRIVC method converges for all N large enough, and that
the matrix

E
{
ϕ̂f,uns(tk)ϕ>f,uns(tk)

}
(30)

is non-singular. Then, at the converging point and as N →∞, the extended CLSRIVC
method and its standard version (i.e., (9) with (28) as filtered instrument vector) solve
the same pseudo-linear regression equation, namely,

E
{
ϕ̂f (tk, θ̄)

(
y(tk)− B̄(p)

Ā(p)
u(tk)

)}
= 0.

Proof. See Appendix E.

4Note that in this case, the sensitivity functions can be described in discrete-time, and the filtered instru-
ment is formed by cascading the sensitivity functions with the discrete-time equivalent of the bank of filters[

1
Aj(p)

, . . . , pn

Aj(p)

]
.
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Remark 4. From the consistency analysis in González et al. (2021), we know that
the standard CLSRIVC method is generically consistent (with respect to the model
and system parameters) even when the noise is not white, as long as it is uncorrelated
with the reference signal. Thus, under that condition and the assumptions in Lemma
5.1, we find that the extended CLSRIVC method is generically consistent for both
stable and unstable systems. Note that, provided some identifiability conditions are
met, the matrix in (30) can be shown to be generically non-singular following the same
approach as in Pan, Welsh, Gonzalez, and Rojas (2021).

Remark 5. The three-stage method for closed-loop continuous-time system identifi-
cation presented by Young et al. (2009) is claimed to induce statistical efficiency for
stable open-loop systems. However, under its current implementation it cannot be used
when the open-loop system is unstable. The all-pass filtering technique exploited in
the present article can also be applied to this method, thus extending it to open-loop
unstable systems as well. After the generation of an estimate of the noise-free input
û(tk), the extended RIVC or SRIVC methods presented in Section 4 permit the iden-

tification of an unstable estimate Ĝ(p) = B̂(p)/Â(p) using û(tk) and y(tk). Finally, a
refinement of this model estimate can be obtained based on the filtered estimates of
the noise-free input and output:

ũ(tk) =
Ad,a(q, θ̂)

Ad,a(q, θ̂)
û(tk), and ỹ(tk) =

Ad,a(q, θ̂)

Ad,a(q, θ̂)

(
y(tk)− Ĝ(p)

[
u(tk)− û(tk)

])
.

6. Estimating continuous-time systems with integral action

In many applications, such as platoon vehicle modeling (Ploeg, Scheepers, Van Nunen,
Van de Wouw, & Nijmeijer, 2011), modeling of DC motors (Ljung, Glad, & Hansson,
2021), or position tracking (Goodwin, Graebe, & Salgado, 2001), prior knowledge of
the system’s dynamics suggests that there is an integrator in the plant. Unfortunately,
the all-pass filtering procedure introduced in Section 4 only stabilizes strictly unsta-
ble poles of the model. Here we propose two solutions for identifying systems with
integration.

Solution 1 (Use the extended versions of LSSVF, SRIVC, RIVC, and CLSRIVC
for a monic denominator polynomial of the model): Instead of deriving the extended
estimators using an anti-monic denominator polynomial for the system (as in (1)), we
can consider a monic polynomial for A∗(p) of the form

A∗(p) = pn
∗

+ a∗n∗−1p
n∗−1 + · · ·+ a∗1p+ a∗0.

With this description, the regression equation is still of the form (20), but with

yf,uns(tk) =
D̃(q,η,θ)

C̃(q,η,θ)

pn

A(p,θ)
y(tk),

ϕ>f,uns(tk)=
D̃(q,η,θ)

C̃(q,η,θ)

[
−1

A(p,θ)
y(tk), . . . ,

−pn−1

A(p,θ)
y(tk),

{
1

A(p,θ)
u(t)

}
t=tk

, . . . ,

{
pm

A(p,θ)
u(t)

}
t=tk

]
.

The extended SRIVC and RIVC estimators with monic denominator polynomial for
the model are obtained by computing (25) iteratively, and the extended CLSRIVC
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estimator for this case uses the filtered instrument vector

ϕ̂f (tk) =

[
−To,j(p)
Aj(p)

r(t), . . . ,
−pn−1To,j(p)

Aj(p)
r(t),

Suo,j(p)

Aj(p)
r(t), . . . ,

pmSuo,j(p)

Aj(p)
r(t)

]>
t=tk

.

The advantage of this formulation is that the estimate for a∗0 can go to zero, contrary
to the anti-monic formulation which fixes the constant term of the denominator to one.
The drawback of these methods is that integration is not forced explicitly, which can
lead to an increase in the covariance of the parameter estimate compared to estimators
that can fix an integrator in the model, as the ones proposed in Solution 2. Note that
the anti-monic formulation studied in Sections 3, 4 and 5 is favored when the model
structure is not known, since it can lead to consistent estimators despite possible
over-parametrization in the denominator (Pan, González, et al., 2020).

Solution 2 (Force a pole at zero in the extended versions of SRIVC, RIVC and
CLSRIVC): The key idea behind this approach is that, if the closed-loop system is
stable and the system has an integrator, the mean value of the system input is zero. In
other words, filtering the input u(tk) through a filter with integration yields a bounded
signal, which can be used in the construction of the filtered regressor and instrument
vectors. The procedure proposed here resembles the one in Pan, Welsh, Brichta, Drury,
and Stoddard (2020), where a known stable pole was forced into the SRIVC algorithm
to identify a biological system.

For simplicity, assume that the system has one integrator. If the true system is of the
form B∗(p)/[pÃ∗(p)], where Ã∗(p) is a monic polynomial of order n, then the extended
RIVC algorithm with a fixed pole at p = 0 can be obtained from the regression equation
(20), where

yf,uns(tk) =
D̃(q,η,θ)

C̃(q,η,θ)

pn−1

Ã(p,θ)
y(tk),

ϕ>f,uns(tk)=
D̃(q,η,θ)

C̃(q,η,θ)

[
−1

Ã(p,θ)
y(tk), . . . ,

−pn−2

Ã(p,θ)
y(tk),

{
1

pÃ(p,θ)
u(t)

}
t=tk

, . . . ,

{
pm−1

Ã(p,θ)
u(t)

}
t=tk

]
,

and the extended CLSRIVC estimator for this case has an instrument vector given by

ϕ̂f (tk) =

[
−To,j(p)
Ãj(p)

r(t), . . . ,
−pn−2To,j(p)

Ãj(p)
r(t),

Suo,j(p)

pÃj(p)
r(t), . . . ,

pm−1Suo,j(p)

Ãj(p)
r(t)

]>
t=tk

.

These formulations lead to model estimates with a fixed pole at p = 0, and also admit
other unstable poles in the estimation process, if present and known a priori.

7. Simulations

In this section we show the applicability of the proposed methods to identify unstable
continuous-time systems. For the first three tests, we consider the following unstable
plant:

G∗(p) =
−0.5p+ 1

p2 + 2ξωnp+ ω2
n

, (31)
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where ω2
n = 2 and ξ = −0.05. The output of this system is sampled at h = 0.1[s],

unless indicated otherwise.

7.1. Discrete-time control, output error model structure

First, the system in (31) is controlled by the discrete-time PID feedback controller

C(q) = 0.0272 +
2.54 · 10−5

1− q−1
+ 7.29(1− q−1),

which includes a digital-to-analog device at its output, rendering a continuous-time
input u(t) that is constant between samples. The noise is also assumed to be constant
between samples, and thus the input and output samples can be generated entirely in
discrete-time by

y(tk) =
G∗d(q)C(q)

1 +G∗d(q)C(q)
r(tk) +

1

1 +G∗d(q)C(q)
v(tk),

u(tk) =
C(q)

1 +G∗d(q)C(q)
r(tk)− C(q)

1 +G∗d(q)C(q)
v(tk),

where G∗d(q) is the ZOH equivalent of G∗(p), and r(tk) with v(tk) are white noise
signals of variance 1 and 0.05, respectively.

Data from 300 Monte Carlo runs, each with N = 15000 input-output samples, are
used for identification. Four algorithms that have been introduced in this work are
evaluated: LSSVF for unstable systems (labeled LSSVF-uns), a refined least-squares
method (labeled Refined LS-uns), SRIVC and closed-loop SRIVC for unstable systems
(SRIVC-uns and CLSRIVC-uns, respectively). These estimators are compared against
the standard SRIVC estimator as implemented in Algorithm 1 of González et al.
(2021). The LSSVF-uns estimate is given by one iteration of (24), and is initialized with
a filter of the form 1/(ã2p

2+ã1p+1), where ã1 and ã2 are the true parameters perturbed
by noise of standard deviation 0.02 and 0.1, respectively. The refined LS-uns, SRIVC-
uns and CLSRIVC-uns estimators are computed based on the initialization given by
LSSVF-uns, and the instrument vector of the SRIVC-uns algorithm is computed by
a first-order numerical differentiation with step size 10−8 (Stoer & Bulirsch, 2002).
The standard SRIVC estimator is initialized with the LSSVF-uns estimate but with
its unstable poles reflected into the stable region of the complex plane. The maximum
number of iterations of all algorithms is set to 50, with a tolerance factor of 10−8, i.e.,
they terminate when

‖θj+1 − θj‖2
‖θj‖2

< 10−8.

The mean and standard deviation of the estimated parameters are given in Table
1, and 10 realizations of both the SRIVC and SRIVC-uns estimators are provided in
Figure 4. Out of the 300 runs, the SRIVC-uns failed to produce an estimate in one
realization (which was not considered in the statistics), while the other methods did
not have errors. The LSSVF-uns method provides a reasonable estimate for the initial-
ization of the SRIVC-uns and CLSRIVC-uns methods, which achieve great accuracy
in the estimated parameters. These results mimic the behavior of their stable counter-
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Method Statistic a1 (−0.0707) a2 (0.5) b0 (0.5) b1 (−0.25)

SRIVC
Mean 0.1132 0.5071 0.5059 −0.2555

S. Dev. 2.36 · 10−1 4.50 · 10−2 3.46 · 10−1 4.45 · 10−2

LSSVF-uns
Mean −0.0614 0.4672 0.4523 −0.2252

S. Dev. 8.95 · 10−3 1.24 · 10−2 5.27 · 10−2 9.65 · 10−3

Refined LS-uns
Mean −0.0669 0.4726 0.4569 −0.2280

S. Dev. 1.74 · 10−3 2.70 · 10−3 6.29 · 10−3 2.03 · 10−3

SRIVC-uns
Mean −0.0708 0.5001 0.5002 −0.2501

S. Dev. 1.49 · 10−3 1.00 · 10−3 3.82 · 10−3 1.17 · 10−3

CLSRIVC-uns
Mean −0.0708 0.5001 0.5002 −0.2501

S. Dev. 1.53 · 10−3 1.12 · 10−3 3.96 · 10−3 2.10 · 10−3

Table 1. Mean and standard deviation of the estimated model parameters obtained with 300 Monte Carlo
runs with a discrete-time controller and an output error model structure.

parts for stable system identification, as it can be proven that, provided some techni-
cal conditions are met5, CLSRIVC is generically consistent for white or colored noise
while SRIVC is generically consistent in closed-loop if the disturbance is white. On the
other hand, the refined least-squares estimate is more precise than its one-iteration
counterpart but does not minimize the 2-norm of the prediction error, which leads
to biasedness in this example. As seen in Figure 4, the standard SRIVC shows poor
performance in the phase plots compared to the SRIVC-uns estimates, since it only
computes stable estimates. Furthermore, the magnitude plot for the SRIVC estimates
show that the realizations are much more volatile than the SRIVC-uns counterparts,
which is in agreement with the large standard deviations of the SRIVC parameters
displayed in Table 1.

7.2. Continuous-time control, output error model structure

We now test the performance of the proposed SRIVC estimator for arbitrary input
signal excitation. This time, a continuous-time PID controller is used to control the
system in (31) of the form

C(p) = 0.0249 +
1.42 · 10−4

p
+

0.974p

0.00897p+ 1
.

Two sampling periods are tested, h = 0.1[s] and h = 0.02[s]. The total time of both
experiments is the same (500[s]), and the statistics of the reference signal and distur-
bance noise are the same for both experiments. The goal is to test the effect of the
sampling period on the biasedness of the extended LSSVF and SRIVC estimators. For
this, a test of 300 Monte Carlo runs are performed for each scenario.

Table 2 presents the mean and standard deviation of the parameters for the LSSVF-
uns and SRIVC-uns estimators adapted for arbitrary input signals (labeled LSSVF-
os-uns and SRIVC-os-uns, respectively). This adaptation is done following the Delta-
domain mechanism proposed in Appendix B. The results show that the SRIVC-uns
estimator is preferred over its initialization method LSSVF-uns, and that the bias
of SRIVC-uns is reduced when the sampling period decreases. This is in line with

5The complete result mentioned here exceeds the scope of this work, and will soon be presented as another

contribution.
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Figure 4. Bode plots for 10 realizations of the SRIVC estimator (grey, upper two plots), 10 realizations of
the SRIVC-uns estimator (grey, lower two plots), and the true system (dashed, green).

h Method Stats. a1(−0.0707) a2 (0.5) b0 (0.5) b1 (−0.25)

0.1[s]
LSSVF-os-uns

Mean −0.0642 0.4944 0.4912 −0.2512
S. Dev. 4.01 · 10−3 4.62 · 10−3 2.06 · 10−2 2.72 · 10−3

SRIVC-os-uns
Mean −0.0661 0.5018 0.5018 −0.2553
S. Dev. 1.20 · 10−3 7.23 · 10−4 2.45 · 10−3 5.58 · 10−4

0.02[s]
LSSVF-os-uns

Mean −0.0676 0.4929 0.4894 −0.2485
S. Dev. 3.75 · 10−3 3.88 · 10−3 1.28 · 10−2 2.10 · 10−3

SRIVC-os-uns
Mean −0.0701 0.5003 0.4991 −0.2527
S. Dev. 1.24 · 10−3 8.40 · 10−4 2.55 · 10−3 5.56 · 10−4

Table 2. Mean and standard deviation of the estimated model parameters obtained with 300 Monte Carlo
runs with a continuous-time controller and an output error model structure.

19



Method Stats. a1(−0.0707) a2(0.5) b0(0.5) b1(−0.25) c1(0.5) d1(−0.85)

RIVC
Mean 0.1593 0.4910 0.6045 −0.2532 0.5435 −0.9252

S.Dev. 1.96·10−2 6.20·10−3 2.54·10−2 3.67 ·10−3 3.24·10−3 8.98·10−3

LSSVF-uns
Mean −0.0645 0.4806 0.3976 −0.2436

S.Dev. 1.20·10−2 1.15·10−2 3.96·10−2 7.83·10−3

SRIVC-uns
Mean −0.1022 0.5026 0.4807 −0.2616

S.Dev. 7.66·10−3 2.96·10−3 1.29·10−2 2.50·10−3

CLSRIVC-uns
Mean −0.0707 0.5003 0.5004 −0.2499

S.Dev. 5.52·10−3 3.72·10−3 1.21·10−2 7.04·10−3

RIVC-uns
Mean −0.0701 0.5003 0.4998 −0.2501 0.4998 −0.8494

S.Dev. 4.35·10−3 2.74·10−3 8.43·10−3 1.43 ·10−3 4.77·10−3 7.38·10−3

Table 3. Mean and standard deviation of the estimated system and noise model parameters obtained with

300 Monte Carlo runs with a discrete-time controller and a hybrid Box-Jenkins model structure.

the analysis in Appendix B, which indicates that the misspecification of the model
structure (i.e., (B1) instead of (15)) is less severe with small sampling periods. Note
that a fast sampling rate for accurate estimates is only required for the continuous-
time control case, as the model structure we use in this scenario cannot enforce stable
predictors and also be equivalent to (4) at the same time.

7.3. Discrete-time control, hybrid Box-Jenkins model structure

Instead of white noise, we now consider a colored noise in the loop and include it in
the identification procedure. The discrete-time ARMA noise process is of the form

v(tk) =
1 + 0.5q−1

1− 0.85q−1
e(tk),

where e(tk) is white noise of variance 0.01. Just as in the previous simulation examples,
15000 samples are obtained for identification and 300 Monte Carlo runs are performed.
The LSSVF-uns estimator is used as an initialization point for the RIVC, SRIVC-uns,
CLSRIVC-uns and RIVC-uns estimators, and the ARMA estimation step of the RIVC-
uns estimator is computed using the armax command of the System Identification
Toolbox in MATLAB (Ljung & Singh, 2012).

In Table 3 we present the mean and standard deviation of each parameter for each
estimator under study. The SRIVC-uns estimator fails to provide accurate estimates
due to the colored noise, which introduces bias in the method. This is not a problem
for the CLSRIVC-uns estimator, as it is generically consistent even if the disturbance
is colored. Again, these results mimic the behavior of the standard version of these
estimators for stable, continuous-time system identification. The RIVC-uns method
achieves excellent performance for estimating unstable systems in a hybrid BJ model
structure, while the standard RIVC method is biased and does not deliver unstable
models.

7.4. System with integral action

In this final test, we identify a continuous-time system with integral action that is
studied in both open and closed-loop. The system and controller we consider in this
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Method Stats. a0 a1 b0 b1

LSSVF-uns-1
Bias 4.24 · 10−7 4.86 · 10−3 −9.24·10−3 6.68 · 10−3

MSE 7.63 · 10−11 4.36 · 10−4 1.18 · 10−3 7.97 · 10−4

SRIVC-uns-1
Bias −2.88·10−8 4.43 · 10−4 −9.09·10−4 1.22 · 10−3

MSE 2.31 · 10−12 1.08 · 10−4 4.30 · 10−4 5.08 · 10−4

SRIVC-uns-2
Bias 0 1.65 · 10−4 −3.82·10−4 −8.25·10−4

MSE 0 1.10 · 10−4 4.37 · 10−4 5.04 · 10−4

CLSRIVC-uns-1
Bias 6.60 · 10−5 −3.73·10−3 3.53 · 10−3 −3.85·10−3

MSE 7.28 · 10−7 1.50 · 10−3 3.27 · 10−3 1.35 · 10−3

CLSRIVC-uns-2
Bias 0 −3.42·10−3 3.16 · 10−3 −3.62·10−3

MSE 0 1.47 · 10−3 3.24 · 10−3 1.33 · 10−3

Table 4. Bias and MSE of the estimated model parameters obtained from a system with integral action with

300 Monte Carlo runs.

test are given by

G∗(p) =
p− 2

p(p+ 1)
, C(q) = −0.249− 2.07(1− q−1),

with sampling period h = 0.1[s]. The additive noise v(tk) is a zero-mean Gaussian
white noise of variance 0.2. Two experimental conditions are tested: open-loop (i.e.,
without controller, and with input u(tk) being a zero-mean Gaussian noise of variance
1), and closed-loop (with the reference r(tk) also being zero-mean Gaussian white
noise with variance 1). The same number of samples and Monte Carlo runs as in
the previous test are used to obtain estimates of the extended versions of LSSVF
and SRIVC for open-loop, and CLSRIVC for closed-loop. The estimators that are
computed following Solution 1 of Section 6 are labeled as LSSVF-uns-1, SRIVC-uns-1
and CLSRIVC-uns-1, and the ones computed from Solution 2 are labeled SRIVC-
uns-2 and CLSRIVC-uns-2. The LSSVF-uns-1 estimator is initialized with a random
polynomial A1(p) = p2 + ã1p+ ã0, with ã0 and ã1 being the true parameters perturbed
by white noise of standard deviation 0.1. The model from this estimator is used as
initialization for the extended SRIVC and CLSRIVC algorithms.

The bias and MSE (mean square error) of each parameter is recorded and shown
in Table 4. Forcing one pole to zero leads to a decrease in bias for the open and
closed loop tests, while having similar MSE compared to the SRIVC and CLSRIVC
variants obtained from Solution 1. At any rate, we verify that both solutions intro-
duced in Section 6 are adequate for estimating systems with integration in open and
closed-loop. The SRIVC and CLSRIVC estimators using Solution 1 are also seen to
be robust despite the perturbation noise being of high variance, thanks to the ad-hoc
stable filtering that is performed whenever the previous iteration returns an unstable
estimate.

8. Conclusions

In this work, we have presented extensions of refined instrumental variable methods
that allow the direct and indirect identification of unstable continuous-time systems in
closed-loop. The main technique consists of considering an ad-hoc noise model which
iteratively cancels the unstable poles present in the model iterates. This tool has been
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applied successfully to the SRIVC and RIVC estimators, as well as to its initialization
method, the LSSVF estimator. The same technique has been shown to be promising for
indirect closed-loop identification with the CLSRIVC estimator. These estimators have
also been extended to identify systems with integral action. In the case of continuous-
time controllers without a hold device at their output, the approach we propose allows
unstable models at the expense of bias in the parameters, and one way to mitigate
this bias is to reduce the sampling period.

Appendix A. Proof of Proposition 4.1

Proof. The model (15) can also be written as

y(tk) =

{
B(p,θ)

A(p,θ)
u(t)

}
t=tk

+

(
C̃(q,η,θ)

D̃(q,η,θ)
− 1

)
ε(tk) + ε(tk).

On the other hand,

ε(tk) =
D̃(q,η,θ)

C̃(q,η,θ)

(
y(tk)−

{
B(p,θ)

A(p,θ)
u(t)

}
t=tk

)
,

which leads to

y(tk)=

{
B(p,θ)

A(p,θ)
u(t)

}
t=tk

+

(
C̃(q,η,θ)

D̃(q,η,θ)
−1

)
D̃(q,η,θ)

C̃(q,η,θ)

(
y(tk)−

{
B(p,θ)

A(p,θ)
u(t)

}
t=tk

)
+ε(tk)

=
D̃(q,η,θ)

C̃(q,η,θ)

{
B(p,θ)

A(p,θ)
u(t)

}
t=tk

+

(
1− D̃(q,η,θ)

C̃(q,η,θ)

)
y(tk) + ε(tk). (A1)

The one-step-ahead optimal predictor is given by the conditional expectation of y(tk)
given the previous values of the input and output. Since ε(tk) is white noise, and the
right-hand side of (A1) depends solely on previous values of y(tk) and u(t), the result
follows.

Appendix B. Filtered regressor and output when the input is an arbitrary
signal

The following filtered regressor and output expressions are proposed to solve the in-
stability problem when the input is an arbitrary signal that can be over-sampled.
Instead of considering the all-pass filter Ad,a(q,θ)/Ad,a(q,θ) for prefiltering the input,

we introduce its fast-sampled Delta version A∆,a(δ,θ)/A∆,a(δ,θ), where if 1/A(p) has
unstable poles {pi}na

i=1, the polynomial A∆,a(δ,θ) has roots of the form

δi =
S

h

(
e

pih

S − 1
)
, i = 1, . . . , na.
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Just like its q-domain version, the polynomial A∆,a(δ,θ) is designed such that the filter
A∆,a(δ,θ)/A∆,a(δ,θ) is all-pass. This means that A∆,a(δ,θ) must be given by

A∆,a(δ,θ) =

na∏
i=1

(
δi + δ

[
1 +

h

S
δi

])
.

We denote the over-sampled input by ũ. With this in mind, we can fit an ARMA
model to the estimated noise sequence

v̂(tk) =
Ad,a(q,θj)

Ad,a(q,θj)
y(tk)−

A∆,a(δ,θj)

A∆,a(δ,θj)

B∆(δ,θj)

A∆(δ,θj)
ũ(tk),

where B∆(δ,θj)/A∆(δ,θj) is the Delta-domain equivalent of the continuous-time
transfer function B(p,θj)/A(p,θj) (Middleton & Goodwin, 1990). After this estima-
tion step, we compute all the filtered signals in the Delta domain as

yf,uns(tk) =
D(q,ηj+1)

C(q,ηj+1)

Ad,a(q,θj)

Ad,a(q,θj)

1

A(p,θj)
y(tk)

ϕf,uns(tk) =
D(q,ηj+1)

C(q,ηj+1)

[
Ad,a(q,θj)

Ad,a(q,θj)

−p
A(p,θj)

y(tk), . . . ,
Ad,a(q,θj)

Ad,a(q,θj)

−pn

A(p,θj)
y(tk),

A∆,a(δ,θj)

A∆,a(δ,θj)

B0
∆(δ,θj)

A∆(δ,θj)
ũ(tk), . . . ,

A∆,a(δ,θj)

A∆,a(δ,θj)

Bm
∆ (δ,θj)

A∆(δ,θj)
ũ(tk)

]>
,

where Bi
∆(δ,θj)/A∆(δ,θj) is the Delta-domain equivalent of pi/A(p,θj) for i =

0, . . . ,m.
Under this formulation, all the unstable poles of the estimated model at each itera-

tion are canceled. The main drawback of this approach is that different all-pass filters
are used for constructing the filtered output and filtered input signals. In other words,
the model structure that is implicitly used is not (15), but rather

y(tk) =
Ad,a(q)

Ad,a(q)

A∆,a(δ)

A∆,a(δ)

B∆(δ)

A∆(δ)
ũ(tk) +

C̃(q)

D̃(q)
ε(tk). (B1)

However, as the sampling period tends to zero, we recover (15) since the all-pass
filters in the first summand cancel out, and the delta description converges to the
continuous-time one (Middleton & Goodwin, 1990).

Appendix C. Proof of Lemma 4.3

Proof. For a fixed noise model parameter vector η, the prediction error cost can be
written as

V (θ) =
1

N

N∑
k=1

(
y(tk)− ŷ(tk|θ)

)2
.
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Its stationary points must satisfy the first-order condition ∂V (θ)/∂θ = 0, that is,

2

N

N∑
k=1

(
y(tk)− ŷ(tk|θ,η)

) ∂
∂θ
ŷ(tk|θ,η) = 0.

On the other hand, a converging point θ̄ of the recursive estimator in (25) satisfies

θ̄ =

[
N∑
k=1

ϕ̂f,uns(tk, θ̄)ϕ>f,uns(tk, θ̄)

]−1 [ N∑
k=1

ϕ̂f,uns(tk, θ̄)yf,uns(tk, θ̄)

]
. (C1)

In the expression above, the dependence on θ̄ in the instrument, regressor and filter
output has been made explicit. Provided that the matrix inverse exists, (C1) can be
written as

N∑
k=1

ϕ̂f,uns(tk, θ̄)
(
yf,uns(tk, θ̄)−ϕ>f,uns(tk, θ̄)θ̄

)
= 0.

Now, note that

yf,uns(tk, θ̄)−ϕ>f,uns(tk, θ̄)θ̄

=
D̃(q,η, θ̄)

C̃(q,η, θ̄)

1 + ā1p+ . . .+ ānp
n

Ā(p)
y(tk)− D̃(q,η, θ̄)

C̃(q,η, θ̄)

{
b̄0 + b̄1p+ . . .+ b̄mp

m

Ā(p)
u(t)

}
t=tk

=
D̃(q,η, θ̄)

C̃(q,η, θ̄)

A(p, θ̄)

A(p, θ̄)
y(tk)− D̃(q,η, θ̄)

C̃(q,η, θ̄)

{
B̄(p)

Ā(p)
u(t)

}
t=tk

=
D̃(q,η, θ̄)

C̃(q,η, θ̄)

(
y(tk)−

{
B̄(p)

Ā(p)
u(t)

}
t=tk

)
.

This last expression coincides with the residual in (19), which means that the converg-
ing point of the estimator in (25) must solve

1

N

N∑
k=1

(
y(tk)− ŷ(tk|θ̄,η)

)
ϕ̂f,uns(tk, θ̄) = 0.

Thus, setting ϕ̂f,uns(tk,θ) = ∂
∂θ ŷ(tk|θ,η) leads to the desired conclusion.

Appendix D. On computing the derivatives in (27)

The following expressions can be used for the implementation of the refined instru-
mental variable method in (25). Denote the numerator of the ZOH-equivalent of
B(p,θ)/A(p,θ) as Bd(q,θ). Since the noise model estimate C(q,η)/D(q,η) does not
depend on θ, we only need to compute derivatives of the form

∂

∂al

{
Bd(q,θ)

Ad,s(q,θ)Ad,a(q,θ)

}
=

∂Bd(q,θ)
∂al

Ad,s(q,θ)Ad,a(q,θ)
−
Bd(q,θ)∂Ad,s(q,θ)Ad,a(q,θ)

∂al

[Ad,s(q,θ)Ad,a(q,θ)]2
, (D1)
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and

∂

∂al

{
Ad,a(q,θ)

Ad,a(q,θ)

}
=

1

Ad,a(q,θ)

∂Ad,a(q,θ)

∂al
−

Ad,a(q,θ)

[Ad,a(q,θ)]2
∂Ad,a(q,θ)

∂al
.

The partial derivative of Ad,s(q,θ)Ad,a(q,θ) with respect to al can be computed by

∂Ad,s(q,θ)Ad,a(q,θ)

∂al
= Ad,a(q,θ)

∂Ad,s(q,θ)

∂al
+Ad,s(q,θ)

∂Ad,a(q,θ)

∂al
,

which reduces the problem to differentiating Ad,s(q,θ), Ad,a(q,θ) and Bd(q,θ). For
Ad,s(q,θ), we exploit (14) and the chain rule for differentiation to obtain

∂Ad,s(q,θ)

∂al
=

n∑
j=1

∂Ad,s(q,θ)

∂adj

∂adj
∂al

=

n∑
j=1

ns∑
k=0

∂ãd,sk

∂adj

∂adj
∂al

q−k,

where ∂adj/∂al can be obtained by differentiating (12), and

∂ãd,sk

∂adj
=


1

ãd,aj−k
, j − ns ≤ k ≤ j

0, otherwise.

On the other hand, by using the fact that Ad,a(q,θ) = q−naAd,a(q−1,θ)/ad,ana , the
partial derivative of this polynomial with respect to al is given by

∂Ad,a(q,θ)

∂al
=
q−na

ad,ana

∂Ad,a(q−1,θ)

∂al
−
q−naAd,a(q−1,θ)

(ad,ana )2

∂ad,ana

∂al

=
q−na

ad,ana

n∑
j=1

na∑
k=0

∂ãd,ak

∂adj

∂adj
∂al

qk −
q−naAd,a(q−1,θ)

(ad,ana )2

∂ad,ana

∂al
,

where

∂ãd,ak

∂adj
=


1

ãd,sj−k
, j − na ≤ k ≤ j

0, otherwise.

Finally, for the derivative of Bd(q,θ) in (D1), we compute this polynomial in terms of
the continuous-time parameter vector θ. For simplicity only, we assume that A(p,θ)
has no roots at p = 0 and that m < n. We have

Bd(q,θ) =
q−n

an
Cadj

(
qI− exp(Ah)

)
A−1

(
exp(Ah)− I

)
B,

where A is given by (13), and

B =
[
1, 0, . . . , 0

]>
, C =

[
0, . . . , 0, bm, bm−1, . . . , b0

]
.
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The equations above are explicit in the parameter al, and therefore allow direct dif-
ferentiation of the polynomial Bd(q,θ) for l = 1, . . . , n.

Appendix E. Proof of Lemma 5.1

Proof. At the converging point of the extended CLSRIVC estimator, θ̄, and as the
sample size tends to infinity, the stationarity assumptions imply that the sums in (25)
converge to their expected values (Söderström, 1975). This leads to

θ̄ = E
{
ϕ̂f,uns(tk, θ̄)ϕ>f,uns(tk, θ̄)

}−1
E
{
ϕ̂f,uns(tk, θ̄)yf,uns(tk, θ̄)

}
.

Under the assumption that (30) is non-singular, we find that the extended CLSRIVC
estimator satisfies

E
{
ϕ̂f,uns(tk, θ̄)

(
yf,uns(tk, θ̄)−ϕ>f,uns(tk, θ̄)θ̄

)}
= 0

⇐⇒ E
{
Ad,a(q, θ̄)

Ad,a(q, θ̄)
ϕ̂f (tk, θ̄)

Ad,a(q, θ̄)

Ad,a(q, θ̄)

(
y(tk)− B̄(p)

Ā(p)
u(tk)

)}
= 0

⇐⇒ E
{
ϕ̂f (tk, θ̄)

(
y(tk)− B̄(p)

Ā(p)
u(tk)

)}
= 0, (E1)

where the last equality holds since the filter Ad,a(q, θ̄)/Ad,a(q, θ̄) is all-pass. Comparing
this with the derivation leading to Equation (7) of González et al. (2021), we see
that (E1) is the same pseudo-linear regression equation that the standard CLSRIVC
method solves in the case when the estimates at each iteration are stable models.
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González, R. A., Rojas, C. R., Pan, S., & Welsh, J. S. (2021). The SRIVC algorithm for
continuous-time system identification with arbitrary input excitation in open and closed
loop. In IEEE 60th Conference on Decision and Control (CDC), in press.

Goodwin, G. C., Graebe, S. F., & Salgado, M. E. (2001). Control System Design. Prentice
Hall.

Ljung, L. (1999). System identification: Theory for the user, 2nd Edition. Prentice-Hall.
Ljung, L., Glad, T., & Hansson, A. (2021). Modeling and Identification of Dynamic Systems.

Studentlitteratur.
Ljung, L., & Singh, R. (2012). Version 8 of the MATLAB System Identification Toolbox. In

16th IFAC Symposium on System Identification, Brussels, Belgium (pp. 1826–1831).
Middleton, R. H., & Goodwin, G. C. (1990). Digital Control and Estimation: A Unified

Approach. Prentice-Hall.
Ni, B., Gilson, M., & Garnier, H. (2012). Two-stage refined instrumental variable method

for identifying Hammerstein-Wiener continuous-time models in closed loop. In 16th IFAC
Symposium on System Identification, Brussels, Belgium (pp. 25–30).

Padilla, A., Garnier, H., Young, P. C., & Yuz, J. (2017). Recursive online IV method for identi-
fication of continuous-time slowly time-varying models in closed loop. IFAC-PapersOnLine,
50 (1), 4008–4013.
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