Rodrigo A. Gonzélez et al., Identifying Lebesgue-sampled Continuous-time Impulse Response Models: A Kernel-based Approach.

To appear in 22nd IFAC World Congress, Yokohama, Japan, 2023 uploaded 6 April 2023

Identifying Lebesgue-sampled
Continuous-time Impulse Response Models:
A Kernel-based Approach*

Rodrigo A. Gonzalez* Koen Tiels* Tom Oomen ***

* Control Systems Technology Section, Department of Mechanical
Engineering, Findhoven University of Technology, The Netherlands.
(e-mails: r.a.gonzalez@tue.nl; k.tiels@tue.nl; t.a.e.oomen@tue.nl).
** Delft Center for Systems and Control, Delft University of
Technology, The Netherlands

Abstract: Control applications are increasingly sampled non-equidistantly in time, including in
motion control, networked control, resource-aware control, and event-triggered control. Some of
these applications use measurement devices that sample equidistantly in the amplitude domain.
The aim of this paper is to develop a non-parametric estimator of the impulse response of
continuous-time systems based on such sampling strategy, known as Lebesgue-sampling. To
this end, kernel methods are developed to formulate an algorithm that adequately takes into
account the output intersample behavior, which ultimately leads to more accurate models and
more efficient output sampling compared to the standard approach. The efficacy of this method
is demonstrated through a mass-spring damper case study.
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1. INTRODUCTION

In system identification and control, it is common to as-
sume that the signals are sampled equidistantly in time,
also known as Riemann sampling. In contrast, event-
based sampling can lead to improvements in control per-
formance, as well as in resource efficiency (Astrom and
Bernhardsson, 2003). In particular, Lebesgue sampling is
one of the most popular event-based sampling methods,
and it consists of sampling a signal whenever it crosses
fixed thresholds in the amplitude domain. This sampling
can be found in incremental encoders (Merry et al., 2013),
and also in networked control systems, where the goal is to
reduce resource utilization without affecting throughput.

The Lebesgue sampling paradigm provides knowledge on
what amplitude band the signals are located in at each
instant of time, thus yielding a quantized measurement
whenever the signal does not cross a threshold. A consider-
able effort has been devoted to the identification of systems
based on quantized measurements. The maximum like-
lihood estimator based on the expectation-maximization
algorithm (EM) has been derived for finite-impulse re-
sponse (FIR) systems by Godoy et al. (2011), while Chen
et al. (2012) developed a regularized FIR estimator for
binary measurements. Risuleo et al. (2019) studied an
approximate maximum likelihood approach, and Bottegal
et al. (2017) propose a kernel-based method for estimating
FIR models. Other approaches have been pursued for the
identification of ARX systems (Agiiero et al., 2017).

* This work is part of the research program VIDI with project
number 15698, which is (partly) financed by The Netherlands Or-
ganization for Scientific Research (NWO).

Although there has been recent work on non-parametric
identification for continuous-time systems using kernel
methods that use non-equidistantly sampled data (Scan-
della et al., 2022), these works do not incorporate the
intersample behavior information derived from a Lebesgue
sampling framework (i.e., the lower and upper bounds on
the unsampled output in between the time-stamps), which
leads to performance detriment. Other work (Kawaguchi
et al., 2016) has considered continuous-time systems with
Lebesgue-sampled outputs, although such results are only
valid for parametric models. On the other hand, the ap-
proaches by Chen et al. (2012); Bottegal et al. (2017);
Risuleo et al. (2019) for identification with quantized data
might be used for obtaining a non-parametric discrete-time
model that can later be converted into continuous-time.
However, this conversion is in many cases ill-defined and
does not admit an arbitrary input intersample behavior,
which drives the need for directly estimating a continuous-
time system from the data (Garnier and Young, 2014).

The problem that is addressed in this paper is the esti-
mation of non-parametric continuous-time models from
Lebesgue-sampled output data. To this end, we seek es-
timators that can 1) provide a continuous-time impulse
response estimate from possibly noisy and short data
records, and 2) exploit the entirety of the output infor-
mation contained in the irregular sampling instants and
the set-constrained intersample behavior. In summary, the
main contributions of this paper are:

(C1) We propose a non-parametric continuous-time im-
pulse response estimator for Lebesgue-sampled sys-
tems. This estimator is obtained by first introducing
a loss function that incorporates the output intersam-



Qﬁni% T 6 7
3l

1. Lebesgue sampling of a signal z(¢) with threshold
h = 1. Red dots indicate the sampling instants and
thresholds being crossed, and dashed gray rectangles
show the regions where z(t) is known to be located.

Fig.

ple information together with a regularization term.
The optimum of the infinite-dimensional optimization
problem is characterized by the representer theorem
(Scholkopf et al., 2001).

(C2) Once the kernel-regularized estimator is written as a
finite linear combination of representers, we present
an iterative procedure that delivers the associated
weights based on the mazrimum a posteriori EM
(MAP-EM) method. This is done by relating the
optimization problem for computing the weights to
the MAP estimator of a particular FIR model.

(C3) We introduce an iterative scheme to optimize the
hyperparameters that describe the kernel and noise
variance from the Empirical Bayes (EB) approach.
These iterations also stem from MAP-EM and require
the computation of second-order moments of the
unsampled output, which are approximated via a
minimax tilting algorithm (Botev, 2017).

The remainder of the paper is organized as follows: in
Section 2 the problem of interest is stated, and practi-
cal aspects of Lebesgue-sampled system identification are
covered. Section 3 contains the derivation of a kernel-based
estimator for continuous-time Lebesgue-sampled system
identification. A numerical study is presented in Section
4, while Section 5 provides concluding remarks. Proofs of
several theoretical results can be found in the Appendix.

2. PROBLEM FORMULATION

Consider the following linear and time-invariant (LTT),
stable, strictly causal, continuous-time system

2(t) = / " g(ryult — ), 1)

where u is a causal, deterministic and exogenous input,
and ¢ is the impulse response of the LTI system. The
output x(t) is corrupted by additive measurement noise,
which results in a continuous-time signal z(t). Assume
that we have access to Ny, data points of the Lebesgue-
sampled version of z(t), as in Fig. 1. That is, given the
threshold distance b > 0 and the signal z(t), we have at our
disposal the sampled sequence {yr(t;)} 5 that satisfies
yr(t1) = z(t;). The time-stamps t;,l = 1,2, ..., Ny, are the
instants in time at which z(t) crosses a fixed threshold hmy,
with m; € Z. Formally, we characterize the time-stamps by

t; = min {r € (t;-1,00) : z(7) = mh for some m € Z},

with m; = z(t;)/h. Without loss of generality, we assume
that ¢t; = 0. We pursue a non-parametric estimate of g

using the continuous-time input {u(t)}sej0,¢y, ] and the

Lebesgue-sampled output {yr, (tl)}i\; L.

2.1 Practical framework for Lebesgue-sampled systems

Incremental encoders operate on this kind of sampling
principle (Merry et al., 2013). In practice, a light source
emits a beam directed towards a slotted disk or strip,
and the output of two light detectors are recorded. These
two signals allow the encoder to detect the direction of
the rotation. The quantity h represents the uncertainty
in the measurements of the incremental encoder, which is
inversely proportional to its resolution. In low-resolution
incremental encoders, the quantization effect produced by
h, in conjunction with the non-equidistant nature of the
sampling mechanism, can impact the performance of, e.g.,
iterative learning control (Strijbosch and Oomen, 2022).

Behind this sampling procedure there typically is an
amplitude detection mechanism that operates at a fast
sampling rate. With this context in mind, we define
A > 0 as the sampling period of this amplitude detection
mechanism. The following assumption is set in place.

Assumption 1. For every time instant t = 1A, 1 =
0,1,..., |t~ /A] +1, the lower and upper threshold levels
associated with the unsampled output z(t) are known. The
lower bound at each time-instant ¢ = 4A is denoted as n;,
and it can be deduced unambiguously from {yy,(t;)} 4.

Thus, a set-valued signal that represents a fast-sampled
version of the gray rectangles in Fig. 1 can be defined as

y(iA) = Qn{2(1A)} == [ns,mi + h). (2)
In the proposed setup, the practitioner has access to y(iA)
as output information. To simplify our exposition (and
with some abuse of notation), we denote {y(iA)}Y, and
{2(iA)}N, as yo.n and zg.y, respectively, with N :=
|tn., /A +1. Note that all vectors and matrices are written
in bold throughout the paper.

Note that we do not assume that each time-stamp ¢
is a multiple of A. Although such assumption is com-
monly used in intermittent sampling setups (Strijbosch
and Oomen, 2022), we do not require it in this paper.

Assumption 2. At every time instant ¢ = iA, the dis-
turbance noise affecting the output z(¢A) is an addi-
tive discrete-time independent and identically distributed
(i.i.d.) Gaussian white noise of variance o2

The noise variance is not known beforehand and is typi-
cally estimated from the data or selected a priori accord-
ing to expert knowledge. After taking into consideration
Assumptions 1 and 2, the problem of interest is: Consider-
ing the continuous-time input {u(t)}:e0,¢y, ] and the set-

valued data {y(iA)}Y,, obtain a non-parametric estimate
of the underlying continuous-time impulse response g.

Remark 1. In many cases, the input u is generated by a
zero-order-hold device of sampling period A,. When A, is
a multiple of A, we may consider the sampled input signal
{u(iA)}N, instead of a fully continuous-time description.
Both viewpoints are equivalent if the intersample behavior
of the sampled input is known and correctly incorporated
in the construction of the algorithms.



Remark 2. We will only consider the output data that are
produced by the input excitation starting from ¢ = 0. We
discard the first output measurement y(0) due to causality.

3. NON-PARAMETRIC ESTIMATION USING
LEBESGUE-SAMPLED DATA

This paper solves the identification problem by incorpo-
rating the Lebesgue-sampling strategy into the framework
of continuous-time kernel-based methods. This section ad-
dresses the main challenges regarding how to adequately
exploit the output uncertainty set information instead of
point data, and how to tune the kernel hyperparameters.

3.1 MAP estimator for Lebesque-sampled systems

We begin by addressing the Lebesgue-sampled system
identification problem from a Bayesian standpoint. In this
regard, we assume that g can be modeled by a zero-
mean Gaussian process with prior distribution p(g) and
covariance E{g(t)g(s)} = v 'k(t,s) with v > 0, and we
are interested in computing the MAP-inspired estimator

gmap(t) = arg ;naX(é (9) +logp(y)), (3)

where ¢(-) denotes the log-likelihood function £(g) =
logp(y1.n]g), with p denoting the probability density
function. The prior p(g) must be described in some manner
so that (3) is tractable. Although the prior density cannot
be formally defined in infinite-dimensional function spaces,
there exists a formal connection (Aravkin et al., 2014)
between MAP estimation and kernel methods by setting
the prior density being proportional to exp(—7|| gHé),
where G is a reproducing kernel Hilbert space (RKHS)
that has k as its kernel. Thus, the first result we present
concerns finding transparent expressions for

g= argrgin(— logp(}’LN\g) + 7“9“%)7
ge

(4)

for a fized kernel k, when y1. is Lebesgue-sampled data.

The next theorem constitutes Contribution C1 of this work.

Theorem 3. Under Assumptions 1 and 2, the kernel-based
estimator (4) is given by
. N .
g(t) = > io1 cigi(t), (5)
where

(6)

,CN}T is

gi(t) = /000 u(iA — 7)k(t, 7)dT,

and the vector of coeflicients ¢ := [c1,ca,...
obtained by solving the optimization problem

N .

’I’h+h_1 T\2

¢=arg min(— E log / eﬁ(z"_Kic) dz;
ceRN i—1 i

with K; being the ith column of the matrix K with entries

K, = /0 /0 w(iA — Eu(jA — 7)k(E, 7)drdE. (8)

+’)/CTKC> , (7)

Proof. We first obtain an expression for p(yi.n|g). The
probability density function of the output prior to sam-
pling z;.xv=[2(A),...,2(NA)]T (conditioned to g) is

]. 1 . ) 2
p(zin|9) = ——F H oz [218)—(gru)(i8)]

Y

where we have used the fact that the additive noise is
Gaussian and i.i.d. by Assumption 2. Therefore, from (2),
the probability mass function of y;.y is

Py1.v]9) =B(=(A) € lm,m+h),..... 2(NA) €[,y +h)lg )
N ni+h 2
_ 1 - / 6720% I:zlf(g*u)(zA):I dZi. (9)
(2770'2)? i=17"Mi
Therefore, computing (4) is equivalent to solving

min sz:lo nﬁZz‘;*l?[zi’(g*“)(m)] 2dz»
9eo\ & g i

7

+vg§>~ (10)

By the representer theorem (Scholkopf et al., 2001), any
g € G that minimizes the cost in (10) admits a representa-
tion of the form (5) with representers g; in (6). Note that
any minimizer g satisfies (g*u)(iA) = K. ¢, with K; being
the ith column of the kernel matrix described by (8), and
also [|g[|3 = ¢"Kec. Thus, replacing the finite-dimensional
representation (5) in (10) reduces the optimization prob-
lem to finding ¢ that minimizes (7). ad
Remark 3. Although ¢ in (5) is not strictly speaking a
MAP estimator of the impulse response g, it can be shown
that (g *u) provides a MAP estimator of the output prior
to Lebesgue sampling at the instants t = A, i =1,..., N.
The proof of this result, which complements the one in
Aravkin et al. (2014) for Riemann-sampled data, is out of
the scope of this paper and will be published elsewhere.

The main contribution of Theorem 3 is recasting the
infinite-dimensional problem for Lebesgue-sampled system
identification in (4) as a finite dimensional one in (7). Note
that ¢ does not have an explicit form as the Riemann-
sampling counterpart (Pillonetto et al., 2022), where it is
computed directly as the solution of a regularized least-
squares problem. The following subsection is focused on
how to compute ¢ for a fixed kernel £ and hyperparameters
~ and o2. Later, we present an algorithm for computing
the kernel hyperparameters using Empirical Bayes.

3.2 Optimal weights with MAP-EM

To compute (7), we propose an iterative procedure based
on the MAP-EM algorithm. This procedure, which ensures
the computation of a local maximum of the cost in (7)
under general conditions as a extension of the standard
EM (Wu, 1983), constitutes Contribution C2 of this paper.
The approach exploits the fact that (7) is related to
the MAP estimator of an FIR model, which is used for
applying the EM algorithm tailored for MAP estimation.
The following lemma makes this connection evident.

Lemma 4. Consider the following linear regression model
with a set-valued output:
2(iA) = K, ¢ + e(iA), (11a)
y(id) = Qn{2(iA)}, (11b)
where {e(iA)}Y, is an ii.d. Gaussian white noise with
variance o2, and K;,i = 1,2,..., N, is assumed known.
Assume that c in (11a) has a Gaussian prior distribution,

with zero mean and covariance K—!/(2v). Then, the MAP
estimator for c is given by ¢ in (7).

Proof. See Appendix A. O



By Lemma 4 we can view the computation of the weights ¢
in a MAP-EM framework if we set the unquantized output
z(iA) in (11a) as our hidden variable. In other words, we
can optimize the a posteriori density for ¢ (which is exactly
the objective function in (7)) by computing the conditional
expectation (i.e., the E-step) of the log complete-data
posterior density given the measurements yi.x and the
current estimate of ¢, and later performing a maximization
step (i.e., the M-step). These two steps are outlined in
Algorithm 1. Details pertaining the EM algorithm and its
derivation can be found in, e.g., (Dempster et al., 1977).

Algorithm 1 MAP-EM for computing ¢ in (7)
1: Input: initial estimate ¢
2: for j=1,2,... do
3: E-step: Compute the expectation

Q(Cvé(j)):E{Ing(zlsz}Il:N‘C)‘y1:Naé(j)} (12)
4: M-step: Solve the optimization problem
¢UtD) = argmax <Q(c, ¢W)) —’}/CTKC) (13)
ceRN
5: end for

The E-step is obtained from a result from quantized
FIR estimation. Afterwards, we present the M-step in
Theorem 6, which contains the iterations for computing ¢.
Lemma 5. (Godoy et al., 2011, Lemma 5). Consider the
discrete-time model (11). The @ function in (12) satisfies
-1 N ni+h )

S [ o KTePolaly(in). 6)dz + C.
=177

where C' is a constant.

Q(c,eV)

" 202

Proof. See Godoy et al. (2011). O
Theorem 6. The M-step in (13) is equivalent to

eU+1) — (K + :}/I)*lz(ﬂ')’
where 4 = 202y, and with the ith entry of z(9) being
2 2y _(j)iz>
zij):KTé(j)Jr\/;U(e}{p{ ((bl) et ¢ (“:ﬂo) )
S H , - 4
erf[b;’ +E] — erf[b;”]

where bz(-j) = (n; — K] ¢9))/(v/20), and the error function
is defined by erflz] := (2/y/7) [ exp(—t?)dt.

(14)

» (15)

Proof. See Appendix B. O
3.3 Kernel hyper-parameter optimization

The optimal weighting ¢ depends on the kernel that is
selected (together with the regularization constant =),
and of the noise covariance 2. These unknown quantities
are typically encompassed in a hyperparameter vector
p that must be estimated using the data at hand. We
pursue an Empirical Bayes (EB) approach to estimate
these unknown parameters. The EB algorithm is highly
efficient, as is evidenced in its broad application (Pillonetto
et al., 2014; Scandella et al., 2022).

There are many well-known kernels that are used for
continuous-time impulse response estimation. For exam-
ple, the stable-spline one of order ¢ is defined as

k(t,7) = sq(e_Bt,e_ﬂT), qg €N,

where 3 is a positive hyperparameter, and s, is the regular
spline kernel of order g. For ¢ = 1 we have s; (e %%, e757) =
e~P#max(t,7)  The EB approach involves estimating the
vector p = [, 3,02]T by solving the optimization problem
ﬁEB = argmax p(Yl:Nlp)v (16)
peT’
where I' denotes the admissible space of hyperparameters
(i.e., v,B8,02 > 0 in the stable-spline case). To describe
such optimization problem more explicitly, we first com-
pute the probability density function of the output prior
to Lebesgue sampling, p(z1.n|p). This expression can be
obtained directly by exploiting the fact that the additive
noise is assumed Gaussian and independent of g (which is
also assumed Gaussian), which leads to
Zl:N|pNN(07K,3/P7+U2I)7 (17)
where we have made explicit the dependence of the kernel
matrix K on the hyperparameter 3. Therefore, the EB
estimator for p is given by
1

Vdet(2m[Ky /v + 07T])
) /zeylz?\,xp {_;ZT(K,B/’Y‘FUQI)_lZ} dz, (18)

where the elements of yi.n are defined in (2). This op-
timization problem involves an N-dimensional integral,
which is hard to compute in general (see, e.g., Chen et al.
(2012); Bottegal et al. (2017)). The intractability is here
addressed by optimizing (18) with EM, similarly as in
the previous subsection. For brevity, we derive the EM
iterations jointly (both E and M steps) in Theorem 7.

PEB = arg max
pel’

Theorem 7. The following iterative procedure is guaran-
teed to converge with probability 1 to a (local or global)
maximum for the cost in (18):

pYUTY =arg min (log det(S,) + tr{S;lQ(j)}) ,
pel

(19)

where S, :=Kg/v + 021, and QU is the second moment
of z1.n given the data and the jth iteration of p, i.e.,

QY =E{z1.nz{ vy, PV} (20)
Proof. See Appendix C. O

The iterations in Theorem 7 reduce the IN-dimensional
integral optimization problem into a form similar to the
Empirical Bayes optimization problem (Pillonetto et al.,
2014) for unquantized output data, at the expense of hav-
ing to compute the second moment of z.y conditioned on
the set-valued data. The QU) matrix cannot be computed
in closed-form in general. In this paper, we extract samples
of a multivariate truncated Gaussian distribution using
the algorithm in Botev (2017) and we approximate the
expectation in (20) via Monte Carlo integration.

8.4 The complete algorithm
To conclude this section, the full algorithm for non-

parametric identification of Lebesgue-sampled continuous-
time systems is described in Algorithm 2.

4. CASE STUDY

In this section, the novel non-parametric estimator is
tested on a practically-relevant example. We consider a



Algorithm 2 Kernel-based non-parametric identification
for Lebesgue-sampled continuous-time systems

1: Input: ug.y_1,¥1.n, initial hyperparameter estimate

p = [’?(1),3(1),&2(1)}T, initial weighting estimate
¢ maximum number of MAP-EM iterations M
for j=1,2,...,.M do
Compute QYY) from (20) using Botev (2017)
Obtain f)(j“):[&(j“‘l),B(j+1),&2(j+1)]T from (19)
end for
for j=1,2,...,M do
Obtain ¢U+Y from (14) with K, 4 and ZU) com-
puted using p(M+1)
8: end for
9: Output: § obtained from (5), with §; computed from

(6) using B(M‘H) as the hyperparameter for k.

mass-spring-damper system with transfer function given by

1

Gls) ms2 +ds +k’

with mass m=0.05[Kg], damping coefficient d=0.2[Ns/m],
and spring constant k=1[N/m)]. The output is sensed with
period A =0.1[s], and A =1[m]. The input is a Gaussian
white noise sequence passed through a zero-order hold
device with period A, = 3[s]. One hundred Monte Carlo
runs are performed with a varying input and an additive
Gaussian white noise prior to the Lebesgue-sampling with
standard deviation 0.05[m]. Each run has a total time
duration of 30[s] (i.e., 300 data points are sensed prior
to Lebesgue-sampling), and on average N, = 69 output
samples are obtained after sampling per run.

Three estimators are tested: the standard kernel-based
continuous-time non-parametric estimator (Scandella et al.,
2022) using the midpoint estimate z(iA) = n; + h/2 as
output data (gie), this same estimator but using the noisy
output z(¢A) prior to Lebesgue sampling as output data
(Jor), and the proposed approach (Algorithm 2 of this
paper, Jieb). Note that the oracle estimator §,, cannot
be implemented in practice, since we do not have direct
knowledge of the system output before the event-sampler.
We measure each estimator’s performance with the metric

fit = 100(1 — [|%7 — x[|2/|Ix — 21|)2),

where x is the noiseless output sequence (prior to
Lebesgue-sampling), %7 is the simulated output using the
jth impulse response estimate, and Z is the mean value of
x. The proposed estimator uses the 1st order stable-spline
kernel with a maximum number of MAP-EM iterations
M = 40, and 1000 samples of a multivariate truncated
Gaussian distribution are obtained to compute QY in (20).

In Figure 2, a typical data set is shown. Note that the
task of the proposed estimator is particularly challenging,
since the overshoot of the output signal z is rarely captured
in the y signal band due to the coarse grid produced by
the threshold level. Figure 3 shows the boxplots of the fit
metric for each estimator. The proposed approach achieves
on average a better fit than the estimator that only uses
the midpoint values 7; +h/2 as output. The giep estimator
is only slightly outperformed by the oracle, despite having
a low resolution for the output measurement mechanism
and a 77% reduction in output data samples on average.

Fig. 2. Input and output signals corresponding to 8[s] of
one Monte Carlo run, with h = 1. The proposed
estimator gje, only uses the fact that the unsampled
output is located in the grey band y.
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Fig. 3. Boxplots of the fit metric for the case study. The
proposed estimator §ep, outperforms the midpoint
method g4, and is close in performance to the oracle

estimator §o,, despite using fewer effective samples.

5. CONCLUSIONS

In this paper we have presented a non-parametric method
to estimate the impulse response of a continuous-time
system based on Lebesgue-sampled data. The proposed
algorithm, which is inspired by MAP estimation and
kernel methods, exploits the intersample knowledge of the
output to deliver more accurate models than the standard
approach while needing much fewer output samples. We
have showed the efficacy of the method in a practically-
relevant example. Future research in this setup includes
the study of computationally-efficient algorithms and the
allocation of the threshold levels for experiment design.
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Appendix A. PROOF OF LEMMA 4

Proof. The MAP estimator for c is computed by
émap=arg max (log p(y1.v|c) +log p(c))
ceR

log det(7K~1 /)

N
=arg max < 5 log(2mo?)— 5

ceRN

N nith
+Zlogl/ €207 5 (e K] C)dzl] ycTKc>, (A1)

where we have used the same derivation as for ¢(g) in
Theorem 3 for computing the log-likelihood term. By
comparing (A.1) to (7), we find that ¢ in (7) is simply
the MAP estimate of ¢ within the model in (11). a

Appendix B. PROOF OF THEOREM 6

Proof. Since the @ function provided by Lemma 5 is
concave in c, it is sufficient to obtain the point(s) which
make the gradient of the objective function equal to zero.
The gradient of Q(c, &) — vcTKe is given by
2 (Q(c e) — vc"Ke)
nith ‘
Z K (K c—2)p(z|y(iA), &) dz —29Ke.
=1
Setting the gradlent to zero yields the iterations

N
e+ — (Z KiKiTJrQ,sz) ZK 9 (B

i=1
where we have defined the conditional mean z(] )

. nit+h )
50 = / zip(zly(iA), 69z,

7

(B.2)
and where we have taken into account that

ni+h )
/ p(zily(iA), e9)dz =1, i=1,2,...,N.
The iterations (14) are obtained from (B
ing the sum related to 2V
Ziv 1 K’KT
Finally, the explicit expression for z(j) (15) can be
obtained directly from expanding the followmg alternative
expression for (15) based on applying Bayes’ theorem on
the conditional expectation in (B.2):

o) _ dy e (Shl - KTeOP) da
20 _ I

i = f,;7+h _K;Fé(j)]Q) dz; '

1) by rewrit-
and using the fact that
= K2, which holds since K is symmetric.

exp (2—1[ Z
Appendix C. PROOF OF THEOREM 7

Proof. We seek to derive the MAP-EM iterations for
computing the estimator in (16). By setting the latent
variable as z1.y, we must compute the following @ function

Q(p, ﬁ(j)) =E {log p(z1:N, Y1:N|P)|y1:N, ﬁ(j)} .
It can be shown that (cf. Eq. (19) of Godoy et al. (2011))

p(Zl:N‘P) if Zi:N €YI1:N,

p(z1v, Y1n|p) = {O otherwise

which, by exploiting (17), leads to

~2Q(p, V) = logdet(2S,) + E{z/.x S, z1.xly1v, 1}
The iterations in (19) follow from applying the commuta-
tivity property of the trace to the expectation above.

The minimization of —2Q(p, p\)) with respect to p pro-
vides the M-step of the MAP-EM iterations for computing
a maximum of the likelihood of interest, which in turn is
equivalent to solving the optimization problem in (18). O



