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Rodrigo A. González ∗ Cristian R. Rojas ∗∗ Siqi Pan ∗∗∗

James S. Welsh ∗∗∗

∗ Department of Mechanical Engineering, Eindhoven University of
Technology, Eindhoven, The Netherlands

∗∗ Division of Decision and Control Systems, KTH Royal Institute of
Technology, Stockholm, Sweden

∗∗∗ School of Engineering, University of Newcastle, Callaghan, NSW,
Australia

Abstract: The identification of electrical, mechanical, and biological systems using data can
benefit greatly from prior knowledge extracted from physical modeling. Parametric continuous-
time identification methods can naturally incorporate this knowledge, which leads to inter-
pretable and parsimonious models. However, some applications lead to model structures that
lack parsimonious descriptions using unfactored transfer functions, which are commonly used
in standard direct approaches for continuous-time system identification. In this paper we
characterize this parsimony problem, and develop a block-coordinate descent algorithm that
delivers parsimonious models by sequentially estimating an additive decomposition of the
transfer function of interest. Numerical simulations show the efficacy of the proposed approach.
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1. INTRODUCTION

Continuous-time system identification methods (Garnier
and Wang, 2008) are popular and successful in a wide
range of practical applications thanks to several advan-
tages they enjoy compared to the discrete-time algorithms
(Söderström and Stoica, 1989). One of these traits is that
some continuous-time methods allow the direct incorpo-
ration of the a priori knowledge of the relative degree
of the physical systems they model. This leads to more
parsimonious representations, which means that simpler
models (in terms of number of parameters) can be used to
accurately describe the phenomenon at hand.

With regards to model flexibility, most linear continuous-
time identification methods parameterize the model struc-
ture as an unfactored transfer function with a user-defined
number of poles and zeros. This is the case for the Predic-
tion Error Method for continuous-time systems (PEM),
as well as the Simplified Refined Instrumental Variable
method for Continuous-time systems (SRIVC, Young and
Jakeman (1980)) and the Least-Squares State-Variable
Filter method (LSSVF, Young (1965)). However, some
practical applications related to, e.g., motion systems and
vibration analysis, consider systems that are more easily
interpreted as a sum of transfer functions with distinct de-
nominators, typically corresponding to different resonant
modes. The SRIVC method cannot handle the estimation
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project EXTREMUM, and by the research program VIDI with
project number 15698, which is (partly) financed by the Netherlands
Organization for Scientific Research (NWO).

of such additive continuous-time systems, since such model
structure does not yield a pseudolinear regression suitable
for constructing the filtered instrument and regressor vec-
tors (Garnier et al., 2007). In addition, it is known that
numerical conditioning issues may arise when estimating
high-order or highly-resonant systems, which are typically
parameterized as the sum of second-order continuous-time
systems (Gilson et al., 2017).

In this paper we propose an algorithm that delivers par-
simonious models for additive continuous-time systems.
This methods performs a block coordinate descent using
SRIVC as a tool for decreasing the output error cost at
each iteration. More precisely,

C1 We obtain an explicit condition under which it is
preferable to estimate additive models instead of
unfactored transfer functions, which is relevant when
deciding what model structure should be considered
for continuous-time system identification;

C2 We prove the global convergence (for large sample
size) of a coordinate-block descent algorithm for the
identification of additive continuous-time systems;

C3 We provide closed-form expressions of the SRIVC
iterations that, at convergence for finite sample size
and under mild conditions, are proven to deliver a
critical point of the cost function being minimized at
each block-coordinate descent step.

The paper is structured as follows. In Section 2, we
introduce the problem setup and discuss different model
parameterizations. Section 3 introduces the parsimony
problem for continuous-time models, while the block-



coordinate descent method that solves this problem is
presented in Section 4. A numerical study can be found in
Section 5, and the paper is concluded in Section 6. Proofs
of the main results can be found in the Appendix.

2. SYSTEM AND MODEL SETUP

Consider the single-input single-output (SISO), linear and
time-invariant, continuous-time system

x(t) =
B∗(p)

A∗(p)
u(t), (1)

where p is the Heaviside operator, and u(t) is the input sig-
nal. The numerator and denominator polynomials B∗(p)
and A∗(p) are assumed coprime and given by

A∗(p) = a∗np
n + a∗n−1p

n−1 + · · ·+ a∗1p+ 1,

B∗(p) = b∗mpm + b∗m−1p
m−1 + · · ·+ b∗1p+ b∗0,

with a∗n ̸= 0 and n ≥ m. The polynomials A∗(p) and B∗(p)
are jointly described by the parameter vector

θ∗ = [a∗1, a
∗
2, . . . , a

∗
n, b

∗
0, b

∗
1, . . . , b

∗
m]

⊤
. (2)

The system G∗(p) = B∗(p)/A∗(p) can also be described
in its modal (or additive) form. This modal form, which
describes the system as a finite sum of transfer functions
(Pan et al., 2021), leads to the alternative description

x(t) =

K∑
i=1

G∗
i (p)u(t), (3)

where G∗
i (p) = B∗

i (p)/A
∗
i (p), and the transfer function

polynomials A∗
i (p) and B∗

i (p) have degrees ni and mi, re-
spectively (mi ≤ ni). We assume without loss of generality
that the A∗

i (p) polynomials are anti-monic (i.e., their con-
stant coefficient is fixed to 1), and they are jointly coprime.
For this representation we write θ∗

i as the parameter vector
that describes the transfer function G∗

i (p), similarly to (2).
In addition, for each separate submodel to be identifiable,
we assume that at most one subsystem G∗

i (p) is biproper.

Given the system in (3), a noisy output measurement is
retrieved every h[s]. That is,

y(kh) = x(kh) + v(kh),

where v(kh) is assumed to be a zero-mean stationary
random process of variance σ2 that is uncorrelated with
the input. We assume that the input has a zero-order hold
(ZOH) intersample behavior, although our results can also
be extended to arbitrary inputs (González et al., 2020).

This paper studies how to determine a model for the
additive decomposition of G∗(p) in (3), with known model
structure, based on N input and output data samples
{u(kh), y(kh)}Nk=1. In addition, we are interested in com-
paring both standard (1) and additive (3) forms in terms
of their parsimony when implementing continuous-time
system identification methods. As the models depend on
the parameter vector θ that is being estimated, we write
them as G(p,θ), or G(p), if the dependence in θ is obvious.

3. PARSIMONY IN CONTINUOUS-TIME SYSTEM
IDENTIFICATION

Direct continuous-time methods such as the SRIVC esti-
mator may suffer from a lack of parsimony when we iden-
tify the sum of transfer functions of particular relative de-
grees. The following proposition, which constitutes Contri-
bution C1 of this paper, indicates the number of additional

parameters that are being estimated if the user decides to
estimate (3) with a model structure G(p) = B(p)/A(p) of
relative degree r instead of estimating the parameters of
each transfer function B∗

i (p)/A
∗
i (p) separately.

Proposition 1. Consider the system in (3), and the model

structure G(p) =
∑K

i=1 Bi(p)/Ai(p). If one instead decides
to use the model structure G(p) = B(p)/A(p) for identi-
fication, with minimal relative degree r that contains the
true system, then the latter model structure incurs in a
lack of parsimony if and only if

K∑
i=1

ri − r > K − 1, (4)

where ri = ni −mi is the relative degree of Bi(p)/Ai(p).
The excess in (4), i.e., the difference between the left and
right hand sides, is the number of additional parameters
that the model structure G(p) = B(p)/A(p) considers.

Proof. The number of parameters to be estimated in each
model Bi(p)/Ai(p) is ni+mi+1, which leads to the need of

estimating
∑K

i=1(ni+mi)+K parameters if one considers

the model structure G(p) =
∑K

i=1 Bi(p)/Ai(p). On the
other hand, the model structure G(p) = B(p)/A(p) re-

quires estimating 2
∑K

i=1 ni−r+1 parameters. Subtracting
both of these expressions leads to an excess of parameters

given by
∑K

i=1 ri−r−K+1. If such quantity is greater than
zero, then we reach the condition in (4). 2

A consequence of this result is that if r = 0 or r = 1, then
the model structure G(p) = B(p)/A(p) suffers from a lack
of parsimony if there exists a transfer function G∗

i (p) in
the expansion (3) with relative degree greater than one.

Example 3.1. Consider the system

G∗(p) =
3

0.25p2 + 0.25p+ 1
+

1

0.0025p2 + 0.01p+ 1
. (5)

This system corresponds to a truncated modal description
of a flexible structure, such as a piezoelectric laminate
beam (Moheimani et al., 2003). Only 6 parameters must
be estimated if the following model structure is used:

G(p) =
b01

a21p2 + a11p+ 1
+

b02
a22p2 + a12p+ 1

. (6)

On the other hand, if this modal decomposition is not
taken into account and one decides to estimate the model

G(p) =
b2p

2 + b1p+ b0
a4p4 + a3p3 + a2p2 + a1p+ 1

(7)

with no constraints on the parameter values, then 7
parameters must be estimated. This model structure leads
to a lack of parsimony compared to (6).

4. BLOCK-COORDINATE DESCENT METHOD FOR
CONTINUOUS-TIME SYSTEM IDENTIFICATION

In this section we present a method that solves the parsi-
mony problem described in Section 3 for the identification
of linear continuous-time systems. The goal is to estimate
the parameters of additive models of the form (3) by
solving the following minimization problem:

min
θi∈Ωi,

i=1,...,K

1

N

N∑
k=1

[
y(kh)−

K∑
i=1

Gi(p,θi)u(kh)

]2

, (8)



with Ωi ⊂ Rni+mi+1 being a compact set where the
parameters of the ith subsystem are assumed to lie. Note
that to solve the optimization problem in (8) one cannot
directly apply refined instrumental variable methods (i.e.,
the SRIVC method (Young and Jakeman, 1980)), since the
denominator polynomials of each submodel Gi(p,θi) are
distinct. Instead, we propose a block-coordinate descent al-
gorithm, in which the cost function is iteratively minimized
with respect to θi while leaving the other decision variables
fixed. To this end, we define the total cost function

VN(θ1, . . . ,θK):=
1

N

N∑
k=1

[
y(kh)−

K∑
i=1

Gi(p,θi)u(kh)

]2
,

where θi ∈ Ωi for i = 1, . . . ,K. Algorithm 1 describes the
general proposed procedure.

Algorithm 1 Block-coordinate descent algorithm

1: Input: initial parameter vector θ1
i for each i

2: for l = 1, 2, . . . do
3: for i = 1, . . . ,K do
4: θl+1

i ←argmin
θi∈Ωi

V(θl+1
1 , . . . ,θl+1

i−1,θi,θ
l
i+1, . . . ,θ

l
K)

5: end for
6: end for
7: Output: parameter vectors liml→∞ θl

i, i = 1, 2, . . . ,K.

Let xl := [(θl
1)

⊤, . . . , (θl
K)⊤]⊤ ∈ Ω ⊂ RP , with Ω =∏K

i=1 Ωi being the parameter space, and P =
∑K

i=1(ni +
mi)+K being the total number of parameters to estimate.
Each iteration of Algorithm 1 (in l) can therefore be
written as xl+1 = A(xl), where A : RP → RP is a mapping
that can be described as a composition of functions:

A = S ◦CK ◦ S ◦CK−1 ◦ · · · ◦ S ◦C1, (9)

where we denote the choice function Ci(x) := (x, i), the
joint parameter vector x := [θ⊤

1 , . . . ,θ
⊤
K ]⊤, and the op-

timization step S(x, i) := (θ1, . . . ,θi, . . . ,θK), with θi =
argminθi∈Ωi

VN (θ1, . . . ,θi, . . . ,θK). The following result
concerns the convergence of Algorithm 1 to a stationary
point of the cost (8), and constitutes Contribution C2.

Theorem 2. (Global convergence of Algorithm 1). Consi-space
der the set of fixed points ΓN = {x ∈ Ω: ∇VN (x) = 0}.
For a sufficiently large N , the limit of any convergent sub-
sequence of {xl} obtained from the iterations xl+1 = A(xl)
almost surely belongs to ΓN .

Proof. See Appendix A. 2

A crucial part of Theorem 2 is the characterization of
the solution set ΓN . One can establish that, in addition
to the uniform convergence of VN as N tends to infinity,
the gradient ∇VN also converges uniformly to ∇V̄ , where
V̄ is defined in Eq. (A.1). This implies that the set of
stationary points of VN , ΓN , converges to those of V̄ , say,
Γ̄ = {x ∈ Ω: ∇V̄ (x) = 0}, in the sense that for every
ϵ > 0 and almost every realization ξ, there exists a sample
size N(ξ, ϵ) ∈ N such that for all N ≥ N(ξ, ϵ) and every
x ∈ ΓN there is a y ∈ Γ̄ such that ∥x − y∥ < ϵ, and also
for every y ∈ Γ̄ there is a x ∈ ΓN such that ∥x− y∥ < ϵ.

Unfortunately, Γ̄ may contain not only the global minima
of V̄ (corresponding to all permutations θi, θj , i ̸= j, that
share the same model structure), but also other local min-
ima and saddle points (Regalia, 1995, Section 7.1). Some

references give sufficient conditions under which Γ̄ contains
only the global minima. For example, if {u(kh)}k∈Z is
white noise and the model structure exactly contains the
true system, then according to Lemma 4.1 of Söderström
(1975b), every stationary point which is not a global mini-
mizer of f̄ must give pole-zero cancellations, thereby lead-
ing to the same minimal realization. This result, however,
is not valid in general for arbitrary inputs.

Remark 1. For Theorem 2 to hold, it is only required for
VN to be decreasing at each step. This means that it is
sufficient to find a parameter vector θ̄i that reduces the
cost VN instead of minimizing it.

4.1 SRIVC for computing the descent step

The block-coordinate descent algorithm described in Algo-
rithm 1 requires a way to compute S(x, i) at each iteration,
for each i = 1, 2, . . . ,K. That is, we need to compute

θl+1
i = argmin

θi∈Ωi

1

N

N∑
k=1

[
y(kh)−

i−1∑
j=1

Gj(p,θ
l+1
j )u(kh)

−
K∑

j=i+1

Gj(p,θ
l
j)u(kh)−Gi(p,θi)u(kh)

]2
(10)

for i = 1, 2, . . . ,K. The key insight is that, for Ωi =
Rni+mi+1 and fixed values of {θl+1

j }i−1
j=1, {θl

j}Kj=i+1, the

optimization problem in (10) reduces to a nonlinear least-
squares problem that can be solved via SRIVC iterations.
Indeed, if we define the residual output of each submodel

ỹ(kh):= y(kh)−
i−1∑
j=1

Gj(p,θ
l+1
j )u(kh)−

K∑
j=i+1

Gj(p,θ
l
j)u(kh),

then θl+1
i must satisfy the first-order optimality condition

1

N

N∑
k=1

φ̂f(kh,θ
l+1
i )e(kh,θl+1

i ) = 0, (11)

where the gradient and total residual are, respectively,

φ̂f(kh,θ
l+1
i )=

[
−pBl+1

i (p)

[Al+1
i (p)]2

u(kh), . . . ,
−pnBl+1

i (p)

[Al+1
i (p)]2

u(kh),

1

Al+1
i (p)

u(kh), . . . ,
pm

Al+1
i (p)

u(kh)

]⊤
,

e(kh,θl+1
i )= ỹ(kh)− Bl+1

i (p)

Al+1
i (p)

u(kh),

with Bl+1
i and Al+1

i being the numerator and denominator

polynomials of the ith submodel evaluated at θl+1
i .

Lemma 4.1, which constitutes Contribution C3 of this
paper, provides the SRIVC iterations that are shown to
deliver stationary points of the cost in (10) at convergence
in iterations under mild conditions.

Lemma 4.1. (SRIVC iterations). For an initial model pa-

rameter estimate θl+1
i,0 and s = 0, 1, 2, . . . , consider the

following SRIVC iterations

θl+1
i,s+1 =

[
1

N

N∑
k=1

φ̂f(kh,θ
l+1
i,s )φ⊤

f (kh,θ
l+1
i,s )

]−1

(12a)

×

[
1

N

N∑
k=1

φ̂f(kh,θ
l+1
i,s )ỹf(kh,θ

l+1
i,s )

]
,



where the filtered regressor φf and filtered residual output
ỹf are given by

φf(kh,θ
l+1
i,s )=

[
−p

Al+1
i,s (p)

ỹ(kh), . . . ,
−pn

Al+1
i,s (p)

ỹ(kh),

1

Al+1
i,s (p)

u(kh), . . . ,
pm

Al+1
i,s (p)

u(kh)

]⊤
, (13)

ỹf(kh,θ
l+1
i,s )=

1

Al+1
i,s (p)

ỹ(kh). (14)

If the matrix being inverted in (12a) is non-singular for all
integers s large enough, then any converging point (when
s tends to infinity), if they exist, satisfies the first-order
optimality condition (11).

Proof. See Appendix B. 2

In practice, one can terminate the SRIVC procedure for
each submodel whenever VN has strictly decreased from
its initial value. This termination rule is in agreement with
Remark 1. Also, note that a decrease in the cost function
requires to initialize the methods close to the global
optimum, since the SRIVC method does not guarantee
global convergence for finite-sample size. This can be done
by applying the standard SRIVC estimator to find a model
for (1), finding the partial fraction expansion, and then
deleting the unwanted high-order numerator terms.

Remark 2. The non-singularity of the matrix in (12a)
depends on the persistence of excitation of the input, as
well as on the interpolation error when constructing the
filtered output in the regressor vector. The generic non-
singularity result in Theorem 1 of Pan et al. (2020) can
be extended to the case in (12a) by including the model
parameters of the other submodels as part of the genericity
statement. Such proof, however, is outside of the scope of
the current paper.

The method we propose for identifying additive continuous-
time systems is detailed in Algorithm 2. Apart from what
has been discussed, additional techniques can be fit to the
algorithm to robustify it. These techniques include a) in-
cluding a non-fixed step size (Söderström and Stoica, 1982)
in the incremental form of these iterations, b) admitting
unstable models by ad-hoc prefiltering (González et al.,
2022), and c) introducing randomization when choosing
the next submodel to be updated (i.e., the i index). The
details of these extensions are left out of our exposition for
simplicity only.

5. SIMULATIONS

We now verify the applicability of the proposed method
through two numerical experiments.

5.1 Case Study 1: 4th order system

We consider G∗(p) as in (5), which can also be written as

G∗(p)=
0.2575p2 + 0.28p+ 4

0.000625p4+0.003125p3+0.255p2+0.26p+1
. (15)

Note that the denominator polynomial coincides with that
of the Rao-Garnier system, which is a benchmark for linear
continuous-time system identification (Rao and Garnier,
2002). We compare the proposed block-coordinate descent
(BCD) method with the SRIVC estimator and the indirect

Algorithm 2: Block-coordinate descent method for addi-
tive continuous-time system identification

1: Input:{u(kh),y(kh)}Nk=1, initialization x1=[θ
1⊤
1 , . . . ,θ1⊤K ]⊤,

tolerance factor ϵ, maximum number of A-iterations
M , and maximum number of SRIVC iterations Ms

2: l← 1, s← 1,
3: while l ≤M do
4: for i = 1, . . . ,K do
5: θl+1

i,1 ← θl
i, s← 1

6: while s ≤Ms do
7: Compute θl+1

i,s+1 using SRIVC (12)

8: if V(θl+1
1 ,. . .,θl+1

i−1,θ
l+1
i,s+1,θ

l
i+1,. . .,θ

l
K)< V(θl+1

1 ,

. . .,θl+1
i−1,θ

l+1
i,1 ,θl

i+1,. . .,θ
l
K) then

9: θl+1
i ← θl+1

i,s+1, s←Ms

10: end if
11: s← s+ 1
12: end while
13: end for
14: xl+1 ← [θl+1⊤

1 , . . . ,θl+1⊤
K ]⊤

15: if
∥xl+1 − xl∥2
∥xl∥2

< ϵ then

16: x̂← xl+1, l←M
17: end if
18: l← l + 1
19: end while
20: Output: x̂ and its associated models {Ĝi(p)}Ki=1.

approach using the SRIV estimator (Young, 1976) con-
verted to continuous-time. The standard SRIVC estimator
uses n = 4 and m = 2 as the model polynomial degrees, in
agreement with the model structure (7). A Monte Carlo
simulation is performed in order to test the fit and the
mean square error (MSE) of the estimated parameters
of all methods. The input is a Gaussian white noise of
unit variance that is interpolated with a ZOH, and the
measurement noise is also white and Gaussian, of unitary
variance. Five hundred Monte Carlo runs are computed
with N = 10000 and h = 0.005[s]. In each run, all methods
are initialized with an additive model whose parameters
deviate at most 10% from the true parameters.

Once the model is obtained from the data in each Monte
Carlo run, the fit metric is computed by

fit = 100
(
1− ∥x̂i − x∥2/∥x− x̄1∥2

)
,

where x is the noiseless output sequence, x̂i is the simu-
lated output sequence of the ith estimated model, and x̄
is the average value of {x(kh)}Nk=1.

In Figure 1 we observe the benefit of obtaining parsimo-
nious models by plotting the boxplot for the fit metric
of all methods. We have also computed the MSE of each
parameter of the equivalent sum model of the form (15) in
Table 1. The indirect approach method (SRIV) provides
models with relative degree equal to one almost always,
hence inducing over-parametrization. The SRIVC estima-
tor avoids this over-parametrization issue yet still cannot
provide parsimonious models due to Proposition 1. The
BCD method is the only one that provides the correct
model structure, which leads to the best performance in
the fit metric and MSEs of each estimated parameter.



Table 1. MSEs of the estimated parameters for each method, Case Study 1.

Method
Parameter
True value

a∗1
0.26

a∗2
0.255

a∗3
3.125 · 10−3

a∗4
6.25 · 10−4

b∗0
4

b∗1
0.28

b∗2
0.2575

b∗3
0

SRIV MSE 3.51 · 10−4 8.53 · 10−5 1.74 · 10−8 5.48 · 10−10 2.44 · 10−2 6.03 · 10−3 1.07 · 10−4 1.55 · 10−7

SRIVC MSE 3.52 · 10−4 7.59 · 10−5 1.71 · 10−8 4.28 · 10−10 2.44 · 10−2 4.56 · 10−3 1.05 · 10−4 0

BCD MSE 3.41 · 10−4 3.45 · 10−5 1.62 · 10−8 2.16 · 10−10 2.41 · 10−2 4.45 · 10−3 9.04 · 10−5 0

Fig. 1. Boxplot of the fit metric for Case Study 1.

5.2 Case Study 2: high-order, highly-resonant system

We test the proposed method on a 16th order system:

G(p) =

8∑
i=1

ci
(p/ωi)2 + 2(ξi/ωi)p+ 1

,

where the natural frequencies ωi are located between 6 and
470 [rad/s], and the damping ratios are values between
0.001 and 0.0017. The input is a multisine formed by 16
sinusoids of random phase, and two hundred Monte Carlo
runs are recorded with N = 3000, h = 0.001[s], and initial
conditions equal to zero. Each run includes a zero-mean
additive noise of variance equal to 2.25, which corresponds
to approximately a signal-to-noise ratio of 20[dB]. Both
SRIVC and BCD methods are initialized at the estimator
given by the LSSVF method (Young, 1965). The tolerance
factor of each method is set to ϵ = 10−16, and a maximum
of 10 A-iterations with Ms = 200 is used for BCD.

Figure 2 shows the fit of the SRIVC estimator compared to
the proposed BCD method in a boxplot format, and also in
a direct comparison plot. In this study, the BCD method
returned better fit compared to the SRIVC estimator in
71.5% of the runs, and no run led to a failure in producing
a result. In addition, Table 2 shows the MSEs of the
parameters ci for each approach. The MSEs related to the
BCD method are lower or equal to the MSEs of the SRIVC
estimates for all the numerator coefficients, which can be
explained by the fact that a more parsimonious model is
being fit to the data.

6. CONCLUSIONS

In this paper we have derived a method for estimating
continuous-time models in an additive form. First, we
explored the fact that certain systems might benefit from
a more parsimonious model description if a modal form
is considered. We proposed a block-coordinate descent
method to identify models with this structure, and we
proved its convergence. The numerical simulations show

Fig. 2. Left figure: Boxplot of the fit metric for the
SRIVC and BCD methods, Case Study 2. Right
figure: Comparison plot between BCD and SRIVC,
Case Study 2. Green dots correspond to runs where
BCD outperforms SRIVC. Red dots represent the
opposite, and the dashed blue line is the separatrix.

that the method delivers more accurate models than the
standard indirect and direct methods, and its potential for
the estimation of large-order and highly-resonant systems
has been studied.
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Appendix A. PROOF OF THEOREM 2

Proof. We adapt the theory in Section 7.7 of Luenberger
and Ye (2008) to first analyze the global convergence of

Algorithm 1 to the solution set Γ̃N = {x ∈ Ω: A(x) = x}.
Afterwards, we prove that Γ̃N ⊆ ΓN . By Lemma B.1
of Söderström and Stoica (1989) (see also Söderström
(1975a)) VN (x) converges almost surely (as N →∞) to

V̄ (x)= E


[
y(kh)−

K∑
i=1

Gi(p,θi)u(kh)

]2 (A.1)

=
1

2π

∫ π
h

−π
h

∣∣∣∣∣
K∑
i=1

[
G̃∗

i (e
iωh)−G̃i(e

iωh,θi)
]∣∣∣∣∣

2

Φu(ω)dω+σ2,

where Φu is the spectrum of the sampled input signal, and
G̃∗

i , G̃i are the discrete-time ZOH equivalents of the system
G∗

i and model Gi, respectively. Since VN is continuous and
Ω is compact, this convergence is uniform. In the following,
we prove the necessary ingredients for applying the Global
Convergence Theorem of Luenberger and Ye (2008).

• Well-posedness of S: Due to the uniform convergence
of VN to V̄ , for almost every realization ξ, there
exists a sample size N ′(ξ) ∈ N such that for all x =
[θ⊤

1 , . . . , θ⊤
K ]⊤ ∈ Ω and N ≥ N ′(ξ), the minimizer

of V (θ1, . . . ,θi−1,θ, θi+1, . . . ,θK) with respect to θ

is unique. Thus, for all N ≥ N ′(ξ), S is a well-defined
point-to-point mapping.
• Descent of algorithm (with respect to VN ): From the
definition of the algorithm A in (9) and the solution

set Γ̃N , it follows that if x ∈ Γ̃N , then VN (A(x)) ≤
VN (x). Otherwise, if x /∈ Γ̃N , then x ̸= A(x) and
therefore we must have VN (A(x)) < VN (x). Thus,

VN is a continuous descent function for Γ̃N and A.
• Closedness of A: From the theorem in Section 8.4 of
Luenberger and Ye (2008), the map S is closed. In
addition, the maps Ci (i = 1, . . . , n) are continuous,
and thus closed. Therefore, by Corollary 1 in Section
7.7 of Luenberger and Ye (2008), A is closed.

From the previous points, it follows that all the conditions
for the Global Convergence Theorem in Section 7.7 of
Luenberger and Ye (2008) hold. This implies that, for
almost every realization and for sufficiently large N , the
limit of every converging subsequence of (xl)l∈N belongs

to the solution set Γ̃N .

Now, to prove that Γ̃N ⊆ ΓN , take x̄ = [θ̄⊤
1 , . . . , θ̄

⊤
K ]⊤ ∈

Γ̃N . Since θ̄1 is an critical point of the function V 1
N(θ1) :=

VN (θ1, θ̄2, . . . , θ̄K) for fixed θ̄2, . . . , θ̄K , then V 1
N must sat-

isfy the first-order optimality condition
∂V 1

N

∂θ1
|θ1=θ̄1

= 0. By

definition, this means that ∂VN

∂θ1
|θ1=θ̄1

= 0. Repeating this

argument for θ̄2, . . . , θ̄K leads to the desired conclusion,
namely, that x̄ ∈ ΓN . 2

Appendix B. PROOF OF LEMMA 4.1

Proof. As s → ∞, any converging point θl+1
i :=

lims→∞ θl+1
i,s of the SRIVC iterations in (12) must satisfy

θl+1
i =

[
1

N

N∑
k=1

φ̂f(kh,θ
l+1
i )φ⊤

f (kh,θ
l+1
i )

]−1

×

[
1

N

N∑
k=1

φ̂f(kh,θ
l+1
i )ỹf(kh,θ

l+1
i )

]
,

which, given the non-singularity of the normal matrix
above, is equivalent to

1

N

N∑
k=1

φ̂f(kh,θ
l+1
i )

[
ỹf(kh,θ

l+1
i )−φ⊤

f(kh,θ
l+1
i )θl+1

i

]
=0. (B.1)

However, by leveraging the expressions for φf and ỹf in
(13) and (14), we find that

ỹf(kh,θ
l+1
i )−φ⊤

f(kh,θ
l+1
i )θl+1

i

=
1

Al+1
i (p)

ỹ(kh)−(1−Al+1
i (p))

Al+1
i (p)

ỹ(kh)−B
l+1
i (p)

Al+1
i (p)

u(kh)

= e(kh,θl+1
i ).

Thus, replacing this result into (B.1) also leads to (11),
concluding the proof. 2


