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Abstract: Blind system identification is aimed at finding parameters of a system model when
the input is inaccessible. In this paper, we propose a blind system identification method that
delivers a single-input single-output, continuous-time model in a nonparametric kernel form. We
take advantage of the representer theorem to form a joint maximum a posteriori estimator of
the input and system impulse response. The identified system model and input are optimised
in sequence to overcome the blind problem with generalised cross validation used to select
appropriate hyperparameters given some fixed input sequence. We demonstrate via Monte Carlo
simulations the accuracy of the method in terms of estimating the input.
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1. INTRODUCTION

Blind system identification (BSI) is exercised in lieu of
standard system identification (Ljung, 1999) when the user
only has access to output measurements. These problems
generally are ill-posed and require some prior knowledge
about the input for the system to be identifiable up to
a scalar constant of the true system (Bai and Fu, 1999).
Similarly, blind equalisation is derived from the same BSI
problem where some prior knowledge about the system
must be provided for the input to be identified. These
procedures have been applied in the areas of biomedicine,
image reconstruction and most commonly in communica-
tions (Abed-Meraim et al., 1997).

Techniques are generally developed around particular ap-
plications, which has resulted in a broad range of blind
methods appropriate to single-input single-output (SISO),
single-input multiple-output (SIMO) and multiple-input
multiple-output systems. These techniques cannot in gen-
eral be directly applied to any arbitrary output to form
a unique solution, as often strict requirements about the
system or the input must be met, such as signal station-
arity or multiple channels. For example, the cross-relation
method (Xu et al., 1995) is a second order statistic-based
method that is limited to SIMO systems where there are
multiple correlated outputs.

The blind system identification of SISO models may not
be tractable and generally, conditions about the input or
the system are imposed to make the problem feasible. Bai
and Fu (1999) developed an oversampling technique for
SISO, linear BSI that uses an infinite impulse response,
which has been further developed for Hammerstein and
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Wiener systems (Bai, 2002). This approach identifies a
discrete-time system blindly by reconstructing the output
information into a SIMO problem with respect to sets of
the output samples, which is similar in construction to
the cross-relation method. A strict requirement is that the
output is over-sampled by a factor greater than the input,
where the input is assumed to be constant during the
over-sampling period. Moreover, subspace methods have
been developed, where the input is assumed to belong
to a known subspace. For instance Ohlsson et al. (2014)
used lifting to perform the blind identification of an ARX
system. In relation to our proposal, Bottegal et al. (2015)
constructed a blind nonparametric estimate using a kernel-
based method.

Although progress has been made on BSI, at present, they
1) cannot be employed directly to admit irregular output
sampling, and 2) generically suffer from ill-conditioning
when converting them to continuous-time (Garnier and
Young, 2014), which is physically relevant for some bi-
ological applications (Friedrich et al., 2017). This paper
addresses these issues. In particular,

(C1) We develop a joint maximum a posteriori input and
continuous-time impulse response estimator that pro-
motes sparsity in the input changes and regularisation
in the impulse response. For this the following aspects
are addressed.
(a) We propose that the input and impulse response

estimate can be updated sequentially, within a
kernel-regularised identification framework.

(b) We show that the kernel matrix may be decom-
posed by assuming that the input is held constant
between samples for a stable spline kernel.

(c) We provide an expression for the transfer func-
tion related to the impulse response estimate.

(C2) We verify the algorithm via Monte Carlo simulations,
where the effects of the hyperparameters and noise are
explored.



The paper is organised as follows. In Section 2 the BSI
problem is presented. Section 3 describes the blind joint
estimation scheme, which is the main contribution of this
work. An analysis on the blind estimator is performed in
Section 4 via Monte Carlo simulations and Section 5 draws
conclusions. Proofs of the main theoretical results can be
found in the Appendix.

2. PROBLEM FORMULATION

Consider the linear time-invariant, asymptotically stable,
continuous-time system

ỹ(t) =

∫ t

−∞
g(τ)u(t− τ)dτ, (1)

where u(t) is the input signal and g(t) is the impulse
response of the system. Equivalently, we can write ỹ(t) =
(g ∗ u)(t), where the symbol ∗ denotes convolution. The
output signal is given by N noisy measurements of ỹ(t) at
time instants ti > 0,

y(ti) = ỹ(ti) + v(ti), for ti = [t0, t1, . . . , tN ], (2)

where v(ti) is a zero-mean white Gaussian noise with a
variance of σ2. Our aim is to estimate the input sequence
{u(ti)}N−1

i=0 , and a nonparametric transfer function for the
impulse response g(t), directly in continuous-time, using
knowledge of the output measurements {y(ti)}Ni=1. With-
out implying some knowledge on the input or system the
problem is ill-posed and the system is not identifiable. In
this work, we assume that the input intersample behaviour
is a zero-order hold and that the changes in the input
amplitude may occur sparsely over time.

3. JOINTLY REGULARISED INPUT AND IMPULSE
RESPONSE ESTIMATION

In a blind setting, where {y(ti)}Ni=1 is the only infor-
mation available, identifying g(t) and u(t) is ill-posed;
there is an infinite amount of solutions available to re-
construct the output. To restrict the solutions, we will
solve the BSI problem in a Bayesian setting by intro-
ducing adequate priors for g and the input sequence
u := [u(t0), u(t1), . . . , u(tN−1)]

⊤, with the goal of solving
a maximum a posteriori estimation problem.

To this end, we define the output measurement vector as
y = [y(t1), y(t2), . . . , y(tN )]⊤, and assume that g(t) can be
modelled as a zero-mean Gaussian process. Our proposal,
outlining the first contribution (C1), is that we compute a
joint input and impulse response estimate[

ĝ
û

]
=argmax

g,u
p(g,u|y)

= argmax
g,u

p(g,u,y)

p(y)

= argmax
g,u

log(p(y|g,u))+log(p(g))+log(p(u)), (3)

where in the last line we have exploited the prior indepen-
dence of g and u, and the monotonicity of the logarithm
function. The three terms in (3) will be analysed next.
First, note that

p (y(ti)|g,u)=
1√
2πσ2

exp

(
− 1

2σ2
(y(ti)− (g ∗ u)(ti))2

)
,

where we have used the fact that v(ti) in (2) is Gaussian-
distributed. Therefore, the first term in the cost (3) can
be expressed as

log(p(y|g,u))=−N
2

log(2πσ2)−
N∑
i=1

(y(ti)−(g∗u)(ti))2

σ2
. (4)

Note that −(N/2) log(2πσ2) is constant with respect to
the impulse response and input, and can be excluded from
the maximisation in (3). With regards to the second term
in (3), the prior p(g) is written with an abuse of notation
since the concept of probability density function is not well
defined in infinite-dimensional function spaces (Aravkin
et al., 2014). Based on the relationship between kernel
methods and Gaussian processes (Pillonetto et al., 2022),
we can restrict the optimisation problem (3) to impulse
responses belonging to a reproducing kernel Hilbert space
(RKHS) G (with norm ∥ · ∥G), and pick

log(p(g)) = −γ∥g∥2G + C, (5)

where C is a normalising constant, and γ is a regularisation
parameter. Such choice of prior is formally justified under
certain conditions; we refer to Aravkin et al. (2014) for
the details. Finally, the input prior p(u) is designed to
take into account the sparsity of the changes in the input.
This can be achieved by modelling the input differences
by a Laplace distribution

log (p(u)) = −λ
N−1∑
i=1

|u(ti)− u(ti−1)|, (6)

where λ is a penalty parameter which affects the number
of changes forced into the input sequence, similar to that
used in fused-lasso, l1-mean filtering and total variation
denoising estimation (Rojas and Wahlberg, 2014).

Substituting terms from (4), (5) and (6) into (3), yields
the reduced joint impulse response and input optimisation
problem[

ĝ
û

]
= argmin

g∈G,u∈RN

( N∑
i=1

(y(ti)− (g ∗ u)(ti))2

+ γ̃∥g∥2G + λ̃

N−1∑
i=1

|u(ti)− u(ti−1)|
)
, (7)

where we have denoted σ2γ and σ2λ as γ̃ and λ̃, respec-
tively. These parameters, together with the kernel, are
unknown and must be tuned with the data at hand.

3.1 Kernel Selection and Tuning

In the context of kernel methods for system identification,
the impulse response g(t) is modelled by a Gaussian
process where the covariance E(g(t)g(τ)) is described
by a positive semi-definite kernel function, k(t, τ) : R+ ×
R+ → R. The selection of the kernel function permits the
incorporation of prior knowledge to the estimator, such
as BIBO stability. Furthermore, there exists a variety of
well-established kernel descriptions that can be used to
parameterise kernel functions (Pillonetto et al., 2022). In
this paper we consider, while not being limited to, the
stable spline kernel of order q with the form

k(t, τ) = sq(e
−βt, e−βτ ), (8)

where β is a strictly positive hyperparameter, and sq is
the regular spline kernel of order q. In general, sq can be
expressed as (Scandella et al., 2022, Prop. 2.1)

sq(e
−βt,e−βτ )=

q−1∑
r=0

γq,r

{
e−β(2q−r−1)te−rβτ if t ≥ τ,

e−β(2q−r−1)τe−rβt if t < τ,

where

γq,r =
(−1)q+r−1

r!(2q − r − 1)!
. (9)

For example, for q = 1 we have s1(e
−βt,e−βτ)= e−βmax(t,τ).



Now that we have a model for the impulse response we
must select the kernel hyperparameters ρ := [β, γ̃] and

choose the penalty parameter λ̃. Standard continuous-time
approaches can be used to tune these hyperparameters for
a given input sequence. Due to the connections between
regularised least squares methods and the regularised func-
tion estimation in RKHSs (Pillonetto et al., 2022), we use
generalised cross validation, which finds the hyperparame-

ters, ρ̂ := [β̂, γ̂], that minimise the predicted residual sum
of squares

ρ̂(û) = argmin
ρ∈Γ

N∑
k=1

(
y(tk)− ŷ(tk)

1− tr(Ĥ(ρ))/N

)2

, (10)

where Ĥ(ρ) = K̂(ρ)(K̂(ρ)+γ̃IN )−1. The predicted output
ŷ(tk) evaluated at ρ̂(û) is found by

ŷ(ρ̂) = K̂(ρ̂)(K̂(ρ̂) + γ̃IN )−1y.

The kernel matrix K has entries given by

Kij =

∫ ∞

0

∫ ∞

0

k(t, τ)u(ti − t)u(ti − τ)dtdτ, (11)

and K̂(ρ) is the kernel matrix K defined by (11) evaluated

at û from (7). The penalty parameter λ̃ is often set prior to
the optimisation and can be varied until a desired sparsity
in the input changes is obtained.

With the formation of the problem in (7) where the
parameter selection is based off the criterion in (10),
the problem is still not feasible. The following section
optimises the input and impulse response estimates in
sequence rather then computing a joint estimate, which
constitutes contribution (C1.a) of the paper.

3.2 Sequential Joint Solution

The following theorem provides alternative expressions
for ĝ(t) and û in (7) that are later used for deriving
a continuous-time frequency response function estimate
based solely on output data.

Theorem 1. Consider the cost in (7), where G is an RHKS
with an arbitrary positive semi-definite kernel function
k : R+ × R+ → R. Then, the optimal input sequence û,
with elements û(ti), can be computed from

û = argmin
u∈RN

(
γ̃y⊤(K+ γ̃IN )−1y + λ̃∥Du∥1

)
, (12)

where the kernel matrix K is given in (11) and the penalty
matrix D ∈ R(N−1)×N is given by

D =


1 −1 0

1 −1
. . .

0 1 −1

 . (13)

Moreover, the impulse response ĝ that minimises the cost
in (7) is given by

ĝ(t) =

N∑
i=1

ĉiĝi(t), (14)

where the representer functions are

ĝi(t) =

∫ ∞

0

k(t, τ)û(ti − τ)dτ, (15)

and ĉi is the ith entry of the optimal weighting vector

ĉ = (K̂+ γ̃IN )−1y, (16)

with K̂ being the kernel matrixK defined in (11) evaluated
at the optimal input sequence û.

Proof. See Appendix A. 2

Once the optimisation problem in (12) is solved, Theorem
1 gives a closed-form expression for the impulse response
estimate, which holds for equidistant and non-equidistant
sampling. This input optimisation can be difficult to solve,
especially if many different input values are present, due
to the computation of the matrix inverse of dimension
N × N . In this paper, we decompose the kernel matrix
K to make the input cost evaluation easier by assuming
that the sampling times are equally spaced by some known
period h. This adds to contribution (C1.b).

Lemma 2. Consider the kernel matrix K with entries de-
scribed in (11), and the stable spline kernels in (8) which
are parameterised by β. If u(t) is constant between the in-
stants t = 0, h, . . . , Nh, then K admits the decomposition

K = ΦOβΦ
⊤, (17)

where Φ is given by

Φ=


u(0) 0
u(h) u(0)
...

. . .
u([N−1]h) u([N−2]h) · · · u(0)

 , (18)

and the matrix Oβ ∈ RN×N has entries

Oβ,ij =

q−1∑
r=0

γq,re
−βh(2q−1)max{i,j}

β2r(2q − r − 1)

{
a(β) if i=j,
bi−j(β) if i ̸=j,

(19)

where

a(β)= 2[(2q−r−1)+reβh(2q−1)−(2q−1)eβhr]/(2q−1),

bi−j(β)= e−βhr(1−|i−j|)(eβrh−1)(eβh(2q−1)−eβrh),

with q ≥ 1 being the order of the stable spline kernel.

Proof. See Appendix B. 2

Given the decomposition in Lemma 2, we consider the
Cholesky factorisation Oβ/γ̃ = LL⊤ (i.e., L is an upper
triangular matrix with positive diagonal), and the thin QR
factorisation (Chen and Ljung, 2013; González et al., 2021)[

ΦL y
I 0

]
= Q

[
R1 R2
0 r

]
, (20)

whereQ is an orthogonal matrix,R1 is an upper triangular
matrix with positive diagonal entries of dimension N ×N ,
and r > 0. Note that the following identities are satisfied:

R⊤
1 R1 = L⊤Φ⊤ΦL+ I,

R⊤
1 R2 = L⊤Φ⊤y,

R⊤
2 R2 + r2 = ∥y∥2.

By leveraging the matrix inversion lemma (Horn and
Johnson, 2012) and the identities above, the first summand
in (12) can be written as

γ̃y⊤(K+ γ̃I)−1y= y⊤[I−ΦL(L⊤Φ⊤ΦL+ I)−1L⊤Φ⊤]y
= R⊤

2 R2 + r2 −R⊤
2 R1(R

⊤
1 R1)

−1R⊤
1 R2

= r2.

Therefore, we have proven the following corollary.

Corollary 3. If u(t) is constant between the time instants
t = 0, h, . . . , (N−1)h, then û in (12) can be computed from

û = argmin
u∈RN

(
[r(u)]2 + λ̃∥Du∥1

)
, (21)

where r(u) is given by the thin QR factorisation in (20).

In summary, we have obtained an inverse-free cost function
for finding the optimal input sequence, whose solution can



be used to directly obtain the continuous-time impulse
response estimate using Theorem 1.

3.3 Nonparametric Transfer Function Estimation

In many practical scenarios, a frequency-domain estimate
of the system g is sought after. Contrary to the impulse
response estimation procedure, the transfer function esti-
mate associated with the estimated kernel hyperparame-
ters and input sequence does not require the computation
of the integrals in (15). Next, we provide a closed form
expression for the transfer function estimate of g, which
corresponds to contribution (C1.c) of this paper. Note this
only holds for equidistant sampling.
Theorem 4. Consider the joint optimisation problem in
(7). The transfer function estimate associated with the
minimiser of (7) can be formed as

Ĝ(s; û) = K⊤(s)(Φ̂⊤Φ̂Oβ + γ̃I)−1Φ̂⊤y, (22)

where Φ̂ is the Toeplitz matrix in (18) evaluated at û, and
K(s) is a vector of size N with entries

Kl(s) =

q−1∑
r=0

γq,re
−lβh(2q−r−1)(eβh(2q−r−1) − 1)

β(s+ rβ)(2q − r − 1)

+
(−1)qβ2q−1e−lh(s+β[2q−1])(eh(s+β[2q−1])−1)

(s+ β[2q − 1])
∏2q−1

k=0 (s+ kβ)
, (23)

where q is the order of the stable spline kernel.
Proof. See Appendix C. 2

Remark 5. The blind system identification problem can
only estimate the system or input up to a scalar multiple
of the true system. This can be seen in (22) if the
hyperparameter γ̃ is also gain-dependent. Indeed, if we
consider the notation Ĝ(s; û, γ̃) to stress the dependence of
γ̃ in the transfer function estimate, by setting ¯̃γ = α2γ̃ and
¯̂u = αû with α ̸= 0, we find that Ĝ(s; ¯̂u, ¯̃γ) = Ĝ(s; û, γ̃)/α,
as expected. This is not a limitation of the proposal, rather
it is inherent to the blind identification problem.

3.4 Complete Algorithm

We estimate the input sequence in (21) and the transfer
function estimate from (22) by forming the kernel hy-
perparameters via the optimisation in (10). The function
init input in Algorithm 1 initialises the first n components
of the input by applying a grid search for the first n input
samples to the input cost objective function in (12). It is
evident from the construction of the regressor matrix in
(18) that the first inputs have a larger effect on the cost.
Thus for computational efficiency the first three values of
the input are initialised and the rest are set to zero.

Algorithm 1 Blind nonparametric continuous-time sys-
tem identification for fixed sparsity factor λ̃

1: Input: data {y(ti)}Ni=1, initial estimates [β, γ̃, λ̃] ←
[1, 0.1, 0.1], number of input samples to initialise n← 3

2: Construct y← [y(t1), ..., y(tN )]⊤

3: Form ρ̂(0) ← [γ̃, β]
4: Initialise û(0) ← init input(n, {y(ti)}ni=1, ρ̂

(0))

5: û← argmin
u∈RN

(
[r(u)]2 + λ̃∥Du∥1

)
▷ Given û(0), ρ̂(0)

6: ρ̂(û)← argmin
ρ∈Γ

N∑
k=1

(
y − ŷ

1− tr(H(ρ, û))/N

)2

7: Output: û and compute Ĝ(s; û) from (22)

4. SIMULATIONS

The simulation results are outlined as follows. First we
explain the experimental setup in Section 4.1. We then
examine the effects of varying the input penalty hyper-
parameter, λ, in Section 4.2, and assess input fit scores
from differing noise levels in 4.3. This provides for our
final contribution (C2). The parameter λ is set prior to
the optimisation in Step 5 of Algorithm 1.

4.1 Simulation setup

We consider the first order system with time constant τ >0

G(s) =
1

τs+ 1
, (24)

which is simulated using a known persistently exciting in-
put ũ(t), where the output is contaminated with Gaussian
i.i.d noise and sampled at a rate of Ts = τ/5 seconds.
The estimated input, û and transfer function estimate,
Ĝ(s, û) are obtained using Algorithm 1, where a stable
spline kernel of order 1 is selected. The results of a Monte
Carlo analysis, in Section 4.3, are evaluated using an input
fit score

F :=
(
1− ∥α(û− ũ)∥2/∥ũ− ¯̃u∥2

)
× 100%, (25)

where ¯̃u is the mean of the true input vector ũ and the
scaling constant α is the median of the vector ũ · (1/û).

4.2 Case Study I: Effect of λ and promoting sparsity

The blind form of the estimator is investigated for a range
of λi values, where the ith input sequence estimate, ûi
corresponds to [λ1 = 0.001, λ2 = 0.009, λ3 = 0.086, λ4 =
0.794]. Here, the system is excited by a piecewise constant
signal with a period of Ti = 5τ seconds, where the input,
ũ, and output, ỹ, are sampled at an interval of Ts = τ/5
seconds to produce N = 100 samples, as shown in Fig. 1.
The noisy output, y, is formed to have an SNR of 20 dB.

0 5 10 15 20 25
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Fig. 1. Simulation of the system in (24) given the input
u(t), including ỹ(t) from (1) and y(t) from (2).

Fig. 2 shows the results when no knowledge of the input
period, Ti, is used. This is achieved by only considering
that the input is constant between sampling intervals Ts.
It is evident that for increasing values of λ, the changes in
the input become more sparse and smooth. In this example
an accurate estimation of the true input is particularly
difficult since the number of input values to be estimated
is equal to the number of output data points available.
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-0.5

0

0.5

Fig. 2. Effects of varying λ with no input information.



To increase the performance of the input estimation, we
include some prior input information. Here, we assume
the input is held for τ seconds and optimise for N/5
unique values in the input optimisation. This improves the
estimation of the input due to reduction of the parameters
in the optimisation, as shown in Fig. 3.

0 5 10 15 20 25
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-0.5

0
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Fig. 3. Effects of varying λ with the assumption that the
input signal is constant over τ seconds.

4.3 Case Study II: Effect of Noise

Lastly, the input optimisation is performed for different
levels of SNR between y(ti) and v(ti) in (2). The Monte
Carlo runs involve simulating the system, in (24), with
different sequences of inputs. In Algorithm (1) we set λ
to zero and use the known constant period of the input.
Here, we simulate each input as a piecewise constant signal
with Ti = 5τ , Ts = τ/5 and 10 input changes to produce a
total of 250 samples. Also, the constant input period Ti is
known priori. As expected, the input fit score improves for
larger signal-to-noise ratios, shown in Fig. 4. Overall, there
were [13, 8, 6, 7, 6] failed runs at a SNR of [6, 12, 20, 40, 60]
dB, respectively, due to poor input initialisations.
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Fig. 4. Effects of varying SNR levels on the input fit score
for 100 Monte Carlo runs per noise level.

5. CONCLUSIONS

This paper has presented a blind nonparametric estimator
for continuous-time systems. A joint input and impulse
estimation scheme is proposed where input and impulse re-
sponse estimates are optimised in sequence. This approach
incorporates regularisation in the impulse response esti-
mate, while also promoting sparsity in the input amplitude
changes. Many simulations were conducted to highlight its
performance. As expected, the blind estimation improved
significantly when the constant input period is known, the
amount of samples was increased and when there were
reduced levels of noise in the measured output.
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Appendix A. PROOF OF THEOREM 1

Proof. Denote V (g,u) as the cost in (7). For a fixed input,
let ĝu = argming∈G V (g,u), and let û be the minimiser of
V (ĝu,u). We then have for any g ∈ G and u ∈ RN that

V (g,u) ≥ V (ĝu,u) ≥ V (ĝû, û),

indicating that we can minimise V (g,u) for a fixed input
sequence and then minimise V (ĝu,u) with respect to u to
obtain the optimal point (ĝû, û). For a fixed input sequence
u, the optimisation problem in (7) is simply the standard
continuous-time impulse response estimation problem in
an RKHS framework (see, e.g., Scandella et al. (2022))

ĝu=argmin
g∈G

(
N∑
i=1

(y(ti)−(g ∗ u)(ti))2+ γ̃∥g∥2G

)
. (A.1)

Thus, the representer theorem (Schölkopf et al., 2001)
applied to (A.1) directly leads to ĝu being given by (14),



with representers ĝi and weighting vector ĉ of the form
(15) and (16), respectively, but evaluated at u instead of û.
Evaluating these expressions at the optimal input sequence
leads to the impulse response estimate of the theorem.

For the input sequence optimisation, we note that the rep-
resenter theorem provides the convolution representation
(ĝu ∗u)(ti) = K⊤

i (K+ γ̃IN )−1y for any bounded u. Thus,
N∑
i=1

(
y(ti)−(ĝu ∗u)(ti)

)2
+ γ̃∥ĝu∥2G

=∥y−K(K+γ̃IN )−1y∥2+γ̃y⊤(K+γ̃IN)
−1K(K+γ̃IN)

−1y

= γ̃y⊤(K+ γ̃IN )−1y. (A.2)

On the other hand, by rearranging terms, the Laplacian
prior term in (7) can be written as

λ̃

N−1∑
i=1

|u(ti)− u(ti−1)| = λ̃∥Du∥1, (A.3)

where D is defined in (13). Replacing (A.2) and (A.3) in
the cost (7) leads to the optimisation problem (12), which
concludes the proof. 2

Appendix B. PROOF OF LEMMA 2

Proof. By separating the double integral in (11) at the
axis τ = ξ, we can decompose Kij (i, j = 1, 2, . . . , N) into
Aij +Aji, where

Aij =

∫ ∞

0

∫ ξ

0

u(ih− ξ)u(jh− τ)k(ξ, τ)dτdξ

=

q−1∑
r=0

γq,r

∫ ∞

0

u(ih−ξ)e−β(2q−r−1)ξ

∫ ξ

0

u(jh−τ)e−βrτdτdξ. (B.1)

We first compute the inner integral. By exploiting the zero-
order hold representation (valid for t ∈ (0, Nh))

u(t)=

N−1∑
k=0

u(kh)
(
µ(t− hk)− µ(t− h[k + 1])

)
(B.2)

with µ(·) being the Heaviside function, we can write∫ ξ

0

u(jh− τ)e−βrτdτ =

N−1∑
k=0

u(kh)gj−k(ξ),

where

gj−k(ξ)=

(rβ)
−1
(
e−rβh[j−k−1] if j>k and ξ ≥h[j−k−1],

−e−rβmin{h[j−k],ξ})
0 otherwise.

Note that the case r = 0 can be easily extracted from
limr→0 gjk(ξ). Therefore,

u(ih−ξ)
∫ ξ

0

u(jh−τ)e−βrτdτ=

N−1∑
k=0

N−1∑
l=0

u(lh)u(kh)fi−l,j−k(ξ),

where
fi−l,j−k(ξ)=gj−k(ξ)

(
µ(h[i− l]−ξ)−µ(h[i− l−1]−ξ)

)

=


(rβ)−1(e−rβh[i−l−1] − e−rβξ) if i−l=j−k>0,
×
(
µ(ξ−h[i−l−1])−µ(ξ−h[i−l])

)
(rβ)−1(e−rβh[j−k−1] − e−rβh[j−k]) if i−l>j−k>0,
×
(
µ(ξ−h[i−l−1])−µ(ξ−h[i−l])

)
0 otherwise.

Inserting this result into (B.1) and integrating, we obtain

Aij =

N−1∑
k=0

N−1∑
l=0

q−1∑
r=0

u(kh)u(lh)γq,rFi−l,j−k(β)

where

Fi−l,j−k(β) =

∫ h[i−l]

h[i−l−1]

fi−l,j−k(ξ)e
−β(2q−r−1)ξdξ. (B.3)

By writing Aji in similar fashion, we reach the following
description for Kij :

Kij=

N−1∑
k=0

N−1∑
l=0

q−1∑
r=0

u(kh)u(lh)γq,r[Fi−l,j−k(β) + Fj−k,i−l(β)].

Next, note that Fi−l,j−k(β) + Fj−k,i−l(β) = 0 if l ≥ i,
and also if k ≥ j. Furthermore, for any integers k ∈
{0, 1, . . . , j − 1} and l ∈ {0, 1, . . . , i − 1} that satisfy
i − l ̸= j − k, we have Fi−l,j−k(β) ̸= 0 if and only if
Fj−k,i−l(β) = 0. Thus, we may write Kij as

Kij =

j−1∑
k=0

i−1∑
l=0

u(kh)u(lh)F̃i−l,j−k(β),

with F̃i−l,j−k(β) being given by

F̃i−l,j−k(β)=

q−1∑
r=0

γq,r

{
2Fi−l,j−k(β) if i−l=j−k,
Fmax{i−l,j−k},min{i−l,j−k}(β) if i−l ̸=j−k.

Alternatively, we can write this entry of the kernel matrix
as U⊤

j OβUi, where Uj , Ui are the jth and ith columns

of Φ⊤ respectively, and Oβ has entries that are given by

F̃i,j(β). Expanding F̃i,j(β) by computing (B.3) returns the
conditional expression in (19). Since Oβ does not depend
on i nor j, we can describe the matrix K by stacking the
vectors Uj and Ui, leading to (17). 2

Appendix C. PROOF OF THEOREM 4

Proof. To obtain the transfer function description we can
apply the Laplace transform directly to both sides of (14):

Ĝ(s, û) =

N∑
l=1

Ĝl(s, û)ĉl, (C.1)

where ĉl is the lth element of the optimal vector from (16).

The transfer function Ĝl(s, û) is computed by

Ĝl(s, û) =

∫ ∞

0

K(s, τ)û(lh− τ)dτ.

If we take into consideration that the input is under a zero-
order-hold assumption (recall Eq. (B.2)), we then have

Ĝl(s, û) =

l−1∑
k=0

(
û(kh)

∫ h[l−k]

h[l−k−1]

K(s, τ)dτ

)
.

The Laplace transform of the stable spline kernel of order
q can be computed (see, e.g., Scandella et al. (2022)) as

K(s; τ)=

q−1∑
r=0

γq,re
−β(2q−r−1)τ

s+ rβ
+

(−1)qβ2q−1e−(s+β[2q−1])τ∏2q−1
k=0 (s+ kβ)

,

where γq,r is given in (9). By integrating this expression

with respect to τ we obtain Ĝl(s, û) =
∑l−1

k=0 û(kh)Kl−k(s),
where Kl−k(s) is defined in (23). In other words, we have

shown that Ĝl(s, û) is simply the lth row of Φ̂ multiplied
by K. Replacing this expression in (C.1) and later expand-
ing ĉ in (16) and rearranging, we reach (22). 2


