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Abstract: Recently, a new indirect approach method for continuous-time system identification
has been proposed that provides complete freedom on the number of poles and zeros of the linear
and time-invariant continuous-time model structure. However, this procedure has reliability
issues, as it may deliver unstable estimates even if the initialisation model and true system are
stable. In this paper, we propose a method to overcome this problem. By generating ellipsoids
that contain parameter vectors whose coefficients yield stable polynomials, we introduce a convex
constraint in the indirect prediction error method formulation, and show that the proposed
method enjoys optimal asymptotic properties while being robust in small and noisy data set
scenarios. The effectiveness of the novel method is tested through extensive simulations.
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1. INTRODUCTION

In continuous-time system identification, the practitioner
seeks to obtain a model of a continuous-time (CT) system
given sampled input and output measurements. Two main
directions have been developed in this field (Unbehauen
and Rao, 1990): the direct approach, which consists in
deriving a CT model directly from measured data; and the
indirect approach, which first seeks a discrete-time (DT)
model, and then transforms it into a CT equivalent model.

Historically, one of the shortcomings of the indirect ap-
proaches for continuous-time system identification has
been the lack of robustness of the available methods (Gar-
nier and Wang, 2008; Garnier and Young, 2014). This
problem has been mostly due to the initialisation of the
prediction error method (PEM) (Ljung, 2003, 2009). In
these contributions, it was shown that provided some ini-
tialisation aspects are solved, indirect approaches can be
competitive against direct approaches such as the SRIVC
method (Young, 1981). More recently, the procedure intro-
duced in González et al. (2018) has provided an alternative
to SRIVC for estimating continuous-time systems with any
prespecified relative degree in an indirect approach frame-
work. This method chooses the initial estimate by the null-
space fitting method for discrete-time system identification
(Galrinho et al., 2018), and shows good performance in
terms of fit and mean square error metrics.

However, the procedure in González et al. (2018) intro-
duces a new problem: Even if the standard discrete-time

? This work was supported by the Swedish Research Council under
contract number 2016-06079 (NewLEADS), and by the Priority
Research Centre for Complex Dynamic Systems and Control (CDSC)
at the University of Newcastle, Australia.

PEM estimate is stable, by projecting its CT equiva-
lent estimate into the proper subspace of the parameter
space that yields the desired relative degree, it is possible
that the resulting parameter vector describes an unstable
system. In order to overcome this robustness issue, it is
necessary to enforce stability in the indirect PEM method
described in González et al. (2018).

In CT systems, enforcing stability as a constraint on the
parameter space can be done through the Routh-Hurwitz
criterion (Goodwin et al., 2001). However, the stability
domain derived for polynomial orders greater than two
is non-convex, which leads to difficulties in optimisation.
This difficulty has been dealt with by obtaining con-
vex bounds in an EM formulation for state-space mod-
els (Umenberger et al., 2018), or by introducing convex
approximations of the stability region, like polyhedra in
a robust control framework (Ackermann and Kaesbauer,
2003), or ellipsoids (Henrion et al., 2003). In particular,
ellipsoidal approximations have been used for imposing
stability in SRIVC in Ha and Welsh (2014), and for closed-
loop control design in Datta et al. (2011).

In this paper, we propose an indirect algorithm for CT
system identification that optimally enforces the desired
relative degree while also enforcing stability on the es-
timate. For imposing stability, we obtain inner convex
approximations of the stability region in the parameter
space, and modify the indirect PEM estimate to include
these convex sets as constraints in its optimisation step.
By construction, the improved method is shown to enjoy
the consistency and asymptotic efficiency of the indirect
PEM method. Via simulations we quantify the robustness
that is gained through the stability enforcement, and show
that the proposed estimator is competitive against SRIVC.



The paper is organised as follows. In Section 2 we describe
the problem, while in Section 3 we recall the indirect
PEM approach for continuous-time system identification.
In Section 4, we present the tools for deriving the ellipsoids
of interest, and introduce the novel indirect method that
enforces stability in the estimate. Numerical experiments
and results are provided in Section 5, and Section 6
concludes this paper.

2. PROBLEM FORMULATION

Consider a linear time-invariant, causal, stable, single
input single output CT system of the form

y(t) = G0(p)u(t) (1)

=
βn−rp

n−r + βn−r−1p
n−r−1 + · · ·+ β1p+ β0

pn + αn−1pn−1 + · · ·+ α1p+ α0
u(t),

where p is the Heaviside operator, i.e., pg(t) := dg(t)/dt,
and r is the relative degree of the system. The numerator
and denominator polynomials of G0(p) are assumed to be
coprime and hence no zero-pole cancellations occur. We
denote θ0

c := [βn−r . . . β0 αn−1 . . . α0]> ∈ R2n−r+1 as
the true CT system parameter vector.

Suppose that the CT input signal is reconstructed through
a zero-order hold (ZOH) device, and that the output is
sampled with period h. A discrete-time noisy measurement
of this signal, {ym[k]}, is taken, see Fig. 1. Here, {e[k]}k∈N
is a zero-mean white noise sequence of variance σ2.
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�
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Fig. 1. System description.

Given the discrete-time input-output data measurements
{u[k], ym[k]}Nk=1, sampled with period h, the goal is to
obtain a CT model estimate for the system G0(p) using
an indirect approach, that captures the correct relative
degree and also enforces stability in the model.

Among the indirect approach methods for CT system
identification, González et al. (2018) have proposed a
method that imposes any predefined relative degree in the
model, with success in extensive simulations. However, this
procedure perturbs the poles of the PEM estimate, which
may lead to instability. Thus, our goal in this paper is
to ensure stability in this estimate, while preserving its
statistical properties.

3. INDIRECT PEM FOR CONTINUOUS-TIME
SYSTEM IDENTIFICATION

In this section we review the indirect PEM estimator
for CT system identification. In contrast to the standard
indirect approach, this method provides the user with
freedom of choice on the number of poles and zeros of
the estimated continuous-time model. In the following, we
assume that the CT model structure is fixed and known 1 .
1 If the model structure of the CT system is not known, then it
can be chosen through statistical measures such as the coefficient of
determination or the Young Information Criterion (Young, 2011).

The standard indirect approach first computes the PEM
estimator using a DT model structure of the form

H(q) =
bn−1q

n−1 + bn−2q
n−2 + · · ·+ b1q + b0

qn + an−1qn−1 + · · ·+ a1q + a0
,

where q is the forward-shift operator qf [k] := f [k + 1].

We denote θ̂d := [b̂n−1 . . . b̂0 ân−1 . . . â0]> ∈ R2n as the
resulting estimate. Then, the standard method computes

the continuous-time parameter vector θ̂c by the ZOH
equivalence between CT and DT systems: (using the d2c
command in MATLAB, for example):

G(s) = sL

{
Z−1

{
H(z)

1− z−1

} ∣∣∣∣
k=t/h

}
,

where L and Z denote the Laplace and Z transforms,
respectively.

It is well known that the d2c conversion of a strictly proper
DT system will almost surely lead to a CT equivalent of
relative degree equal to one. So, instead of delivering the
standard indirect approach estimate, the indirect PEM

estimator for G0(p) takes θ̂c and performs a second op-
timisation step, in which it locates the parameter vector

that is closest to θ̂c in an appropriate metric, subject to
the constraints of relative degree.

To pose the optimisation problem of indirect PEM, the
procedure requires knowledge of the covariance matrix of

θ̂c. An estimate of this matrix can be obtained by noting

that the parameters in θ̂c are related to θ̂d by the zero-
order hold equivalence equations, which define a nonlinear

mapping f : θ̂c → f(θ̂c) = θ̂d that is differentiable almost
everywhere. Hence, the following asymptotic relationship

holds for the covariance matrices of θ̂d and θ̂c:

Σθ̂d
= E{(θ̂d − θ0

d)(θ̂d − θ0
d)>} ≈ JΣθ̂c

J>,

where θ0
d is the vector of real parameters of the discrete-

time ZOH equivalent of G0(p), and J is the Jacobian
matrix of f evaluated at a consistent estimate of θ0

c , which

can be θ̂c or this same estimate but setting to zero the
coefficients that produce an excess of relative degree.

With this covariance matrix estimate, the indirect PEM
method (Söderström et al., 1991) in this context reduces
to solving the following problem:

θ̃c = arg min
θ

(θ̂c − θ)>Σ−1
θ̂c

(θ̂c − θ) (2)

s.t. [Ir−1 0]θ = 0,

where Ir−1 is the identity matrix of dimension r − 1, 0 is
the null matrix (or vector) of appropriate dimensions, and
Σ−1

θ̂c
= J>Σ−1

θ̂d
J. The optimisation problem in (2) has an

explicit solution (González et al., 2018), which is given by

θ̃c = C

[
0r−1 0>

0 I2n−r+1

]
C−1θ̂c. (3)

where C is the Cholesky factorization matrix of Σθ̂c
(Horn

and Johnson, 2012) (i.e., a lower triangular matrix with

positive diagonal entries such that Σθ̂c
= CC>).

The estimator (3) can be seen as the L2 best approxima-

tion to the PEM CT estimate θ̂c that imposes the desired
relative degree. Note that it relies on PEM giving a good
initial estimate of the CT model parameters.



3.1 Properties of the indirect PEM for CT systems

We briefly present some properties of estimator (3), all of
which are proven in González et al. (2018).

Theorem 3.1. Consider the system described by Fig. 1 and
(1), where {e[k]}Nk=1 is a Gaussian white noise sequence.
Assume that the sampling frequency 2π/h is larger than
twice the largest imaginary part of the s-domain poles
and that there is no delay in the real system. Then, the
estimator (3) is a consistent and asymptotically efficient
estimator of the real vector parameter θ0

c , provided that
the DT model set (with the chosen relative degree) con-
tains the real system.

Theorem 3.2. The asymptotic covariances of the standard
indirect approach and indirect PEM with relative degree
enforcement satisfy the following properties:

AsCov(θ̃c − θ0
c , θ̂c − θ̃c) = 0,

AsCov(θ̃c − θ0
c) = AsCov(θ̂c − θ0

c)−AsCov(θ̂c − θ̃c),

where AsCov{·} denotes the asymptotic covariance of a
stochastic process (Ljung, 1999).

Although the indirect PEM has strong asymptotic statis-
tical properties, when only a small number of data points
is obtained, or when the signal to noise ratio is low, the
high order numerator coefficients in the standard indirect
estimate can be far from zero, which produces strong per-
turbations in the denominator coefficients of the indirect
PEM estimate. This can lead to instability, even if the
standard indirect estimate is stable. To enforce stability
in the model, while preserving the asymptotic properties
in Theorems 3.1 and 3.2, we derive a novel indirect-PEM-
based method, which is described next.

4. ENSURING STABILITY IN INDIRECT PEM

The key idea behind our new approach is to generate a
closed convex stability domain in the space of the param-
eter coefficients, and to project the standard indirect ap-
proach PEM estimate into the intersection of this domain
with the subspace that yields the correct relative degree.

Before presenting the novel indirect PEM algorithm, we
introduce the techniques used to generate the closed con-
vex stability domain. Let

D = {s ∈ C : a+ b(s+ s̄) + css̄ < 0} (4)

be a given region in the complex plane, where a, b, c ∈
R. We define the vectors x := [x0 x1 . . . xn−1]> and
x̄ := [x0 x1 . . . xn−1 xn]> to be the coefficients of the
polynomial x(s) = x0 +x1s+ · · ·+xns

n, where we assume
without loss of generality that xn = 1. The following well-
known result relates the location of the roots of x(s) with
a positive-definiteness condition, and is an extension of
Hermite’s stability criterion (Parks and Hahn, 1993).

Lemma 4.1. (Lev-Ari et al. (1991); Henrion et al. (2003))
The roots of the polynomial x(s) lie in D if and only if

H(x̄) =

n∑
i,j=0

xixjHij � 0,

where Hij = H>ji ∈ Rn×n are given constant matrices
depending only on D, which are computed by solving

x̄x̄> − x̃x̃> = aR>l H(x̄)Rl

+ b(R>l H(x̄)Rr + R>r H(x̄)Rl) + cR>r H(x̄)Rr, (5)

where Rl = [In 0n×1], Rr = [0n×1 In], and x̃ ∈ Rn+1 is
the vector of coefficients of the polynomial

x̃(s) =

(
b+ cs√
b2 − ac

)n

x

(
−a+ bs

b+ cs

)
. (6)

For the following result, we need to write this matrix as

H(x̄) = (In ⊗ x̄)>H(In ⊗ x̄), (7)

where ⊗ denotes the Kronecker product, and H ∈
Rn(n+1)×n(n+1) is formed by replacing (7) in (5) and
matching polynomial coefficients. We now present a
method for generating stable ellipsoids, firstly introduced
in Henrion et al. (2003) and here stated in Theorem 4.1.

Theorem 4.1. Let D be a stability region with associated
matrix H, and let xC ∈ Rn describe a n-th order monic
polynomial with all its roots in D. Solve the convex
optimisation problem

min
P,G,D

trace(P) (8)

s.t. (D⊗ In+1)H = H(D⊗ In+1)

(D⊗ In+1)H � In ⊗P + G

D = D> � 0 ∈ Rn×n,

where

• P is a symmetric block matrix which is partitioned
as

P =

[
−P PxC

x>CP 1− x>CPxC

]
,

where P � 0,P ∈ Rn×n, and
• G is a symmetric block matrix of the form

G =


0 G>21 · · · G>n1

G21 0 · · · G>n2
...

. . .
...

Gn1 Gn2 · · · 0

 ,
where Gij ∈ R(n+1)×(n+1) skew-symmetric matrices.

Take P = Popt as the solution of the optimisation
problem stated above. Then, any vector x such that (x−
xC)>Popt(x − xC) ≤ 1 parametrises a polynomial x(s)
with all its roots in D.

Proof : See Henrion et al. (2003). 2

By setting a = 0, b = 1 and c = 0, Theorem 4.1 provides an
efficient procedure for computing an ellipsoid with center
at xC such that the vectors inside the ellipsoid render a
stable polynomial. This is a convex constraint, which can
be easily included in a convex optimisation problem. Note
that xC must describe a stable polynomial.

Since the stability region (in the parameter space) for

the polynomial Ã(p) = ã0 + ã1p + · · · ãn−1pn−1 + pn

is non-convex for n > 2 (Ackermann, 1993), we shall
approximate this non-convex region by ellipsoids, and
solve the minimisation problem of the indirect PEM in (2)
for each convex region. Our main contribution can be
resumed in the general algorithm we describe next.



Algorithm 4.1: Indirect PEM with stability guarantees

1: Input: {u[k], ym[k]}Nk=1, number of poles n, relative
degree r, number of ellipsoids M

2: Compute θ̂c and Σθ̂c
; the estimate of θ0

c by the
standard indirect approach and its covariance matrix

3: Compute θ̃c, by (3)

4: if θ̃c describes an unstable model then
5: Compute H by Equations (5) and (7)
6: Pick αi ∈ Rn, i = 1, . . . ,M , all which describe

stable polynomials
7: for i = 1 : M do
8: For xC = αi, obtain Pi

opt by solving (8)

9: Solve θ̃
i

c = arg min
θ

(θ̂c − θ)>Σ−1
θ̂c

(θ̂c − θ)

s.t. [Ir−1 0]θ = 0,

(θ −αi)>Pi
opt(θ −αi) ≤ 1

10: end for
11: Compute

θ̃c = arg min
{θ̃i

c}Mi=1

1

2
(θ̂c − θ̃

i

c)
>Σ−1

θ̂c
(θ̂c − θ̃

i

c)

12: end if
13: Output: θ̃c and its associated model G̃(p) =

B̃(p)/Ã(p).

Since the system G0(p) is stable, the method proposed in
Algorithm 4.1 enjoys the same asymptotic properties of
the indirect PEM method described in Theorems 3.1 and
3.2. This is due to the fact that indirect PEM will provide
unstable models with null probability as the number of
data points tends to infinity, and thus, for large data
sets, the proposed algorithm will deliver the same estimate
as indirect PEM. However, it is expected that the novel
method performs better than the estimator (3) for small
data sets, or when the signal to noise ratio is poor.

Note that in step 6 of the algorithm, we propose to
choose M stable polynomials, which correspond to the
centers of the stable ellipsoids. These polynomials should
be chosen such that the global optimum belongs to at least
one ellipsoid. In practice, the user may choose to reflect

the unstable poles obtained from θ̂c, or may choose the
coefficients from any other continuous-time identification
method that provides a stable estimate given the data. In
this case, any consistent method (such as PEM, or SRIVC
(Pan et al., 2019)) is particularly recommended.

Remark 1. In the optimisation procedures H must be only
computed once, since it only depends on the number of
poles of the model, whose structure is assumed fixed.

Remark 2. The proposed procedure can also extend to
incorporate other constraints on the model’s poles. For
example, if it is known that the true system does not have
poles with real part greater than a∗ < 0, it is only needed
to adjust the parameter a in (4), recompute H̄ by using
(5), (6) and (7), and compute the ellipsoids accordingly.

5. SIMULATION STUDIES

In this section, we compare the proposed algorithm to
other well-known indirect and direct CT system identi-
fication methods.

5.1 Experimental setup

The methods we compare are the indirect PEM method
(González et al., 2018) (labeled PEMind), the proposed
stable indirect PEM method (PEMind-s) and the sim-
plified refined IV method for CT systems (SRIVC). The
ellipsoids which yield stability were obtained through The-
orem 4.1 by solving the LMI optimisation problem with the
CVX package (Grant and Boyd, 2014) in MATLAB, using
the SeDuMi solver. Two ellipsoids (M = 2) were computed
for each stable estimate, with centers at the (reflected
for stability, if necessary) standard PEM estimate, and
the reflected indirect PEM estimate. For obtaining the
SRIVC estimate, CONTSID 7.3 has been used (Garnier
and Gilson, 2018) with default tuning parameters.

For the following experiments, several considerations have
been taken regarding robustness of the indirect methods.
First, following the suggestions in Ljung (2009), PEM was
initialised with the DT equivalent of the estimate given
by SRIVC. If PEM returned an unstable estimate, we
simply reflected the unstable poles. If the DT estimate
from PEM had a pole in the real negative axis, an n-th
order approximation of the (n + 1)-th order CT estimate
was obtained using the balred command in MATLAB. 2

Each method has been tested under 500 Monte Carlo
runs for each experiment. For each run, we recorded the
normalised error of the estimated model ‖Ĝ−G0‖2/‖G0‖2,
and the fit measure

Fit = 100

(
1− ‖ŷ − y‖2
‖y − ȳ‖2

)
,

where ŷ denotes the simulated output for validation data,
and ȳ is the mean value of the output signal y. Since we
are interested in robustness, we analyse the spread of these
measures. This is done through box plots and analysing the
performance in the most challenging trials.

5.2 Tests on the Rao-Garnier system

We first consider the Rao-Garnier system (Rao and Gar-
nier, 2002), which is a benchmark system for CT system
identification methods. It is described by

G0(p) =
−6400p+ 1600

p4 + 5p3 + 406p2 + 416p+ 1600
.

This system has complex poles at −0.5 ± 1.94i and −2 ±
19.9i, a non-minimum phase zero, and relative degree r =
3. Thus, the standard indirect approach delivers two extra
zeros, which are be eliminated by the proposed method,
while forcing stability on the estimate. Note that SRIVC is
known to produce accurate estimates of the Rao-Garnier
system, whereas the indirect methods often converge to
local minima (Ljung, 2003).

A PRBS signal was used as input, with number of stages
equal to nine, and the data length of the shortest interval
set to three. This lead to a signal of length N = 1533. The
sampling period was set to h = 0.1, which is considered
a high sampling period for this system. The additive
white noise was Gaussian, with variance set to be half the
2 The problems encountered here can be solved by enforcing stability
directly in the discrete-time PEM estimate, proposing a different
sampling period, or different data length. These adjustments were
not done, in order to simplify the experiment.



variance of the noiseless output (i.e. signal-to-noise ratio
of 3[dB]).

We plotted the fit box plots for each method in Fig. 2.
All fits under 0 were grouped, and the number of outliers
of this kind were recorded in the lower part of the box
plots. In this set of runs, PEMind returned 17 unstable
estimates, all of which were denoted as outliers in the box
plot. Figure 2 shows that by forcing stability in an optimal
manner, PEMind-s is the most robust method against bad
outliers while being comparable to the other estimators in
terms of median value.
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Fig. 2. Fit box plots for the Rao-Garnier system experi-
ment. Red crosses in between the horizontal grey lines
are compressed outliers (fits less than 0).

We also compared the behaviour of each estimator in the
most challenging runs for each one. The worst 100 fits
and normalised model errors were ordered in increasing
performance (ascendant for fit, and descendant for model
errors). Figure 3 shows the plots for each metric, where
unstable estimates by PEMind were bounded by -100 fit,
and 80 model error 3 . These plots confirm that PEMind-s
is the method of choice for challenging data sets.
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Fig. 3. Performance in each metric of the worst 100 runs
per method under the Rao-Garnier system experi-
ments.

In order to study the effect of the stability enforcement
method in the poles of the system, we observed the
3 Here it is considered that unstable systems have 2-norm equal to
infinity. Thus, for plotting the measure results, we set the values for
unstable models at a fixed upper bound.

poles of the 17 trials that returned unstable PEMind
estimates. These poles are shown in Fig. 4, together with
the stabilised poles obtained by PEMind-s, for the same
tests. In this study, stabilisation was mostly required for
the high-frequency poles, since they were poorly estimated
due to the low sampling frequency. After stabilisation, the
estimated poles are in fact closer to the true ones.
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Fig. 4. Unstable poles returned by PEMind (red), stablised
poles returned by PEMind-s (blue), and true poles
(green).

5.3 Tests on Random systems

The proposed approach was tested against a set of 500
random systems of order 3 and relative degree 2, which
was generated with the rss command in MATLAB. The
slowest pole of each CT random system was set to have real
part not larger than −0.2. The input was a unit variance
Gaussian white noise of length N = 500, and the additive
noise was also Gaussian and white, with variance such
that the signal-to-noise ratio was equal to 3[dB]. The noisy
output was sampled ten times faster than the fastest pole
or zero of the real system.

In Fig. 5 we present box plots with the fit measure for all
methods under study. In this experiment, 31 estimates by
PEMind were unstable, whose fits were set to -100 in the
box plot. As expected, the proposed method reduces the
number of outliers of PEMind, and performs considerably
better than SRIVC in terms of robustness. In addition,
we have also determined the performance in the 100 most
challenging runs in Figure 6. This time, unstable estimates
from PEMind were chosen to have fit -100 and normalised
model error equal to 15. From these plots, we find that
PEMind-s is the most robust method in terms of fit and
model errors.

6. CONCLUSIONS

In this paper, we have proposed a novel indirect-approach
algorithm for continuous-time system identification. By
introducing convex inner approximations of the stabil-
ity region in the indirect PEM framework, the proposed
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Fig. 5. Fit box plots for the set of random systems.
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Fig. 6. Performance in each metric of the worst 100 runs
per method under the set of random systems.

method guarantees the desired number of poles and zeros
in the continuous-time model, while enforcing stability in
the estimate. Due to its construction, it enjoys optimal
asymptotic properties and it is also robust for short and
noisy data set scenarios, where standard indirect PEM
estimates can be highly inaccurate. Extensive simulations
confirm that enforcing stability in the indirect PEM esti-
mate is a promising approach to increasing the robustness
of the indirect approach for CT system identification.
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