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Abstract— Continuous-time system identification has primar-
ily dealt with sampled input and output data for constructing
continuous-time models. However, sampled signals can lead to
inaccurate models if their intersample behavior is not addressed
appropriately. In this paper, this effect is explored in detail
with respect to the SRIVC and CLSRIVC estimators, which
are some of the most popular methods for open and closed-loop
continuous-time system identification respectively. Based on our
consistency analysis, we propose an algorithm that alleviates the
asymptotic bias of these methods for arbitrary input excitations
and provide an alternative procedure to achieve consistent
estimates for band-limited signals. Simulation examples show
the effectiveness of our approach.

Index Terms— System identification; Continuous-time sys-
tems; Parameter estimation; Instrumental variables.

I. INTRODUCTION

System identification deals with the problem of construct-
ing models of systems based on input and output data.
Additionally to the historical interest in discrete-time models,
continuous-time system identification has been re-visited in
depth in the recent years [1] due to its advantages over
its discrete-time counterpart in, e.g., robustness, physical
insights, and handling of irregular sampling [2].

In most continuous-time system identification methods,
the derivatives of the input and output signals are implicitly
or explicitly needed. A common way to compute these
derivatives is via prefiltering the signals with state variable
filters, which has ultimately led to the Simplified Refined
Instrumental Variable method for Continuous-time systems
(SRIVC, [3]). The SRIVC method is one of the most popular
methods available for continuous-time system identification
[4], and has been extended to handle time-delays [5], multi-
input single-output [6], and closed-loop systems [1, Chapter
5], with its closed-loop variant known as CLSRIVC.

In the case of zero or first-order hold (ZOH or FOH
[7], respectively) input signals, the SRIVC estimator has
recently been proven to be generically consistent [8] and
asymptotically efficient [9]. However, this estimator is no
longer consistent if there is a misspecification of the in-
tersample behavior of the input signal when forming the
regressor vector, shown in [8]. The loss in consistency has
been suggested previously [10], although the remedy to this
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problem, based on a comprehensive statistical analysis of the
algorithm, has only been explored recently and solely for
continuous-time multisine input signals [11]. The misspeci-
fication of the intersample behaviors of the signals is also
significant for closed-loop system identification using the
CLSRIVC method, as this estimator only requires samples
of the system input and reference but does not consider
that the underlying continuous-time signals usually cannot
be described with hold devices. This phenomenon has been
somewhat overlooked in the literature, as in previous contri-
butions the controller has been assumed to be fully digital
[12] leading to ZOH inputs, or the input and output have
been sampled at very high rates [13], which in practice can
mitigate the consistency issues to a certain degree. Note
that high sampling rates and input-output time-synchronism
cannot always be achieved in practical applications.

In summary, the main results of this paper are:
• We characterize the asymptotic bias of the SRIVC and

CLSRIVC methods for when the intersample behavior
of the input is misspecified. With this, we prove that
these procedures are asymptotically biased due to a
misconstruction of the regressor vector.

• We propose a general procedure, based on oversam-
pling, to compute the regressor and instrument vectors
of the SRIVC and CLSRIVC methods that leads to alle-
viating the bias for arbitrary input signals. An alternative
filtering procedure is also presented for band-limited
input or reference excitation.

• The theoretical findings and methods are illustrated via
simulation examples.

The rest of the paper is structured as follows. In Section II
the setup for open and closed-loop system identification is
described. Section III introduces the SRIVC and CLSRIVC
estimators, and their consistency issues are exposed. In
Section IV we propose fixes to these algorithms that lead
to consistent estimators in open and closed-loop. Simulation
examples that illustrate the methods are presented in Sec-
tion V, and conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

Consider a linear time-invariant, causal, single-input
single-output, continuous-time system

x(t) =
B∗(p)

A∗(p)
u(t)

where p is the Heaviside operator, i.e., pg(t) = dg(t)/dt. The
system numerator and denominator polynomials are assumed



to be coprime with orders m∗ and n∗ respectively, i.e.,

B∗(p) = b∗m∗pm
∗

+ b∗m∗−1p
m∗−1 + · · ·+ b∗1p+ b∗0

A∗(p) = a∗n∗pn
∗

+ a∗n∗−1p
n∗−1 + · · ·+ a∗1p+ 1, (1)

and the system parameter vector is described by

θ∗ =
[
a∗1, a

∗
2, . . . , a

∗
n∗ , b∗0, b

∗
1, . . . , b

∗
m∗
]
.

In this work, we make the key assumption that the intersam-
ple behavior of the system input is known exactly between
consecutive samples, and it is arbitrary. That is, the input
is not only allowed to be generated through a hold device
such as a ZOH or FOH, but can also be a continuous-
time band-limited signal or, in general, any continuous-time
signal. By discarding the common assumption of the input
being interpolated through a hold device, our work covers the
identification of cascaded continuous-time systems, as well
as continuous-time closed-loop systems without a sampler
between controller and plant.

In this paper we study both open and closed loop system
identification. For the open loop case, we suppose that the
output signal is regularly sampled at time instants {tk}Nk=1

and the resulting output is contaminated by an additive zero-
mean stochastic process v(tk). That is,

y(tk) = x(tk) + v(tk), k = 1, 2, . . . , N.

On the other hand, the closed loop framework we consider is
portrayed in Figure 1. Here, the continuous-time controller
C(p) = P (p)/L(p) is assumed known, and r(t) is a
known arbitrary continuous-time reference signal which is
assumed to be independent of the noise disturbance v(t).
The continuous-time input and output are described by

y(t) =
G∗(p)C(p)

1 +G∗(p)C(p)
r(t) +

1

1 +G∗(p)C(p)
v(t),

u(t) =
C(p)

1 +G∗(p)C(p)
r(t)− C(p)

1 +G∗(p)C(p)
v(t).

-r(t)+

−
6

k -e(t)
C(p) -u(t)

G∗(p) -
+

v(t)

k?+ y(t)��
tk

-y(tk)

Fig. 1. Block diagram for the closed-loop framework.

The goal is to obtain a continuous-time transfer function
estimate for G∗(p) := B∗(p)/A∗(p) based on data. For
the open-loop case we assume knowledge of N output
data measurements {y(tk)}Nk=1 the continuous-time signal
{u(t)}t∈[t1,tN ], and for the closed-loop framework we also
assume access to {r(t)}t∈[t1,tN ]. Contrary to most past
contributions on this topic [12], [14], our setup does not
include a sampler after the controller. This implies that the
signal that is fed to the plant in general cannot be represented
as a sampled signal passed through a ZOH or FOH device.

If the SRIVC or CLSRIVC estimators are used for esti-
mating θ∗, we will show that in many cases an asymptotic

bias will be present due to a misspecification of the inter-
sample behavior of the input in the regressor vector of the
methods. Our focus will be to extend the applicability of
these estimators for arbitrary input excitations.

III. THE SRIVC AND CLSRIVC ESTIMATORS

First introduced in [3], the SRIVC estimator for
continuous-time systems in open-loop is an iterative in-
strumental variables algorithm that generates parameter-
dependent filters that are applied to sampled input and
output data at each iteration. The closed-loop version of this
algorithm, known as CLSRIVC, has been studied extensively
in [1, Chapter 5] and is constructed similarly to its open-loop
variant, as seen next.

The SRIVC and CLSRIVC procedures require updating,
at each iteration, a filtered regressor vector ϕf (tk,θj), a
filtered instrument vector ϕ̂f (tk,θj), and a filtered output
yf (tk,θj). These vectors are formed by the derivatives of
filtered versions of the input and output data, therefore
avoiding direct computation of the derivatives of sampled
signals. The filtering process is implemented in discrete-time
based on a ZOH or FOH intersample behavior assumption
on the sampled signals. For the open loop case, these are
given by

ϕf (tk,θj) =

[
−p
Aj(p)

y(tk), . . . ,
−pn

Aj(p)
y(tk),

1

Aj(p)
u(tk), . . . ,

pm

Aj(p)
u(tk)

]>
, (2)

ϕ̂f (tk,θj) =

[
−pBj(p)
A2
j (p)

u(tk), . . . ,
−pnBj(p)
A2
j (p)

u(tk),

1

Aj(p)
u(tk), . . . ,

pm

Aj(p)
u(tk)

]>
, (3)

yf (tk,θj) =
1

Aj(p)
y(tk), (4)

where Aj(p) and Bj(p) are the denominator and numerator
polynomials of the j-th iterate of the SRIVC method (i.e.,
associated with θj).

Remark 3.1: In this paper, the notation G(p)x(tk) means
that the sampled signal {x(tk)}Nk=1 is being interpolated via
a ZOH or FOH device, filtered through the continuous-time
filter G(p), and later evaluated at t = tk. In contrast, the
notation {G(p)x(t)}t=tk (or with square brackets for the
vector case) means that the continuous-time signal x(t) is
filtered through G(p) and later evaluated at t = tk.

As seen in (3), the filtered instrument vector recreates
a filtered version of the noise-less output and input. This
principle is extended for the closed-loop variant, in which
the instrument vector resembles the filtered output and input
signals present in the regressor in (2), but without explicit
dependence on the noise v(t). For notation purposes, we
introduce the nominal complementary and control sensitivity
functions as

To,j(p) :=
Gj(p)C(p)

1 +Gj(p)C(p)
; Suo,j(p) :=

C(p)

1 +Gj(p)C(p)



respectively. The filtered instrument vector for the closed-
loop case is then given by

ϕ̂f (tk,θj) =

[
−pTo,j(p)
Aj(p)

r(tk), . . . ,
−pnTo,j(p)
Aj(p)

r(tk),

Suo,j(p)

Aj(p)
r(tk), . . . ,

pmSuo,j(p)

Aj(p)
r(tk)

]>
. (5)

Algorithm 1: SRIVC and CLSRIVC
1: Input: Model order (n,m), initial vector estimate
θ1 ∈ Rn+m+1, tolerance ε, maximum number of it-
erations MaxIter, {u(tk), y(tk)}Nk=1 for open loop,
{r(tk), u(tk), y(tk)}Nk=1 for closed loop

2: Using θ1, form the model polynomials A1(p) and B1(p)
3: j ← 1, flag← 1
4: while flag = 1 and j ≤ MaxIter do
5: if system is operating in open loop then
6: Prefilter {u(tk), y(tk)}Nk=1 to form ϕf (tk,θj),

ϕ̂f (tk,θj) and yf (tk,θj) by (2), (3) and (4)
7: end if
8: if system is operating in closed loop then
9: Prefilter {r(tk),u(tk), y(tk)}Nk=1 to form ϕf(tk,θj),

ϕ̂f (tk,θj) and yf (tk,θj) by (2), (5) and (4)
10: end if
11: Compute the parameter estimate

θj+1←

[
N∑

k=1

ϕ̂f(tk,θj)ϕ
>
f (tk,θj)

]−1[ N∑
k=1

ϕ̂f(tk,θj)yf(tk,θj)

]

12: if A−1j+1(p) (or To,j+1(p)) is unstable then
13: Reflect the unstable poles of A−1j+1(p) (or To,j+1(p))

into the stable region of the complex plane
14: end if
15: if ‖θj+1−θj‖2

‖θj‖2 < ε then
16: flag← 0
17: end if
18: j ← j + 1
19: end while
20: Output: θj and its associated model Bj(p)/Aj(p).

The main shortcoming of the SRIVC and CLSRIVC
estimators, which are jointly described in Algorithm 1, is
their loss of consistency when there is a misspecification of
the intersample behavior of the sampled input signal. Here
we will analyze this effect for both algorithms jointly.

For any fixed N , as the number of iterations j tend to
infinity, the converging point θ̄ of these estimators satisfies[

1

N

N∑
k=1

ϕ̂f (tk, θ̄)ϕ>f (tk, θ̄)

]−1
×[

1

N

N∑
k=1

ϕ̂f (tk, θ̄)
(
yf (tk, θ̄)−ϕ>f (tk, θ̄)θ̄

)]
= 0. (6)

Note that

yf (tk, θ̄)−ϕ>f (tk, θ̄)θ̄ = y(tk)− B̄(p)

Ā(p)
u(tk),

where Ā(p) and B̄(p) are the A and B polynomials evaluated
with coefficients described in θ̄. On the other hand, due to

the fact that the input (or reference, in the closed loop case)
is uncorrelated with the noise present in y(tk), we have

E
{
ϕ̂f (tk, θ̄)y(tk)

}
= E

{
ϕ̂f (tk, θ̄)

{
B∗(p)

A∗(p)
u(t)

}
t=tk

}
,

where we have used the notation introduced in Remark 3.1.
As the sample size tends to infinity and under mild assump-
tions, the sums in (6) converge to their expected values [15],
thus leading to

E
{
ϕ̂f (tk, θ̄)ϕ>f (tk, θ̄)

}−1×
E

{
ϕ̂f (tk, θ̄)

({
B∗(p)

A∗(p)
u(t)

}
t=tk

− B̄(p)

Ā(p)
u(tk)

)}
= 0.

Provided some identifiability conditions concerning the
model structure and persistence of excitation are met, we
can show that E

{
ϕ̂f (tk, θ̄)ϕ>f (tk, θ̄)

}
is generically non-

singular1, which leads to

E

{
ϕ̂f (tk, θ̄)

({
B∗(p)

A∗(p)
u(t)

}
t=tk

− B̄(p)

Ā(p)
u(tk)

)}
=0. (7)

This equation characterizes the asymptotic bias of the SRIVC
and CLSRIVC estimators when the intersample behavior
of the system input does not match the one used in the
algorithms. For the sequel, we will consider the open-loop
case (i.e., ϕ̂f (tk, θ̄) as in (3)), although the same can be con-
cluded about the CLSRIVC method after a similar derivation.
The filtered instrument ϕ̂f (tk, θ̄) can be computed as

ϕ̂f (tk, θ̄) = S(−B̄, Ā)
1

Ā2(p)
ud(tk),

where S(−B̄, Ā) is the Sylvester matrix formed by the
polynomials −B̄(p) and Ā(p), which is non-singular if B̄(p)
and Ā(p) are coprime [17, Lemma A3.1], and ud(tk) is a
vector formed by the derivatives of the input, i.e.,

ud(tk) = [pn+mu(tk), pn+m−1u(tk), . . . , u(tk)]>.

Also, we can write

B̄(p)

Ā(p)
u(tk)− B∗(p)

A∗(p)
u(tk) =

1

Ā(p)A∗(p)
u>d (tk)h,

where h is a vector that contains the coefficients of
A∗(p)B̄(p)− Ā(p)B∗(p). Thus, (7) is equivalent to

E
{

1

Ā2(p)
ud(tk)

1

Ā(p)A∗(p)
u>d (tk)

}
h=E

{
1

Ā2(p)
ud(tk)∆(tk)

}
,

(8)
where we have defined the error signal ∆(tk) as

∆(tk) :=

{
B∗(p)

A∗(p)
u(t)

}
t=tk

− B∗(p)

A∗(p)
u(tk).

In the case where the input is exactly reconstructed by a
known hold device, we have ∆(tk) = 0 and thus h = 0,

1The complete result, assumptions and analysis for the open-loop case
can be found in [8], whereas the closed-loop case can be found in [16].



since the matrix on the left hand side of (8) is known to be
generically non-singular by Theorem 1 of [8]. So, we reach

h = 0 ⇐⇒ B̄(p)

Ā(p)
=
B∗(p)

A∗(p)
,

i.e., the SRIVC estimator is generically consistent. Other-
wise, if the intersample behavior of the input is misspecified
in the computation of the regressor, then ∆(tk) 6= 0 and
the expectation on the right hand side of (8) is in general
different from zero. This leads to h 6= 0, which means that
the SRIVC estimator will be asymptotically biased.

In the next section, we introduce algorithms that deal with
this problem.

IV. SRIVC AND CLSRIVC FOR ARBITRARY SIGNALS

The asymptotic bias of SRIVC and CLSRIVC that has
been characterized in the previous section can be canceled if
∆(tk) = 0. This is achieved if the intersample behavior of
the input in the filtered regressor in (2) matches that of the
input of the true system, i.e., if

ϕf (tk,θj) =

[
−p
Aj(p)

y(tk), . . . ,
−pn

Aj(p)
y(tk),

{
1

Aj(p)
u(t)

}
t=tk

, . . . ,

{
pm

Aj(p)
u(t)

}
t=tk

]>
. (9)

Remark 4.1: In terms of asymptotic covariance, it can also
be shown (see [9] for the details for the open-loop case) that
the correct intersample behavior of the input (reference) in
the filtered instrument is needed for asymptotic efficiency of
the method. Thus, we need to compute

ϕ̂f (tk,θj) =

[
−pBj(p)
A2
j (p)

u(t), . . . ,
−pnBj(p)
A2
j (p)

u(t),

1

Aj(p)
u(t), . . . ,

pm

Aj(p)
u(t)

]>
t=tk

(10)

for the open loop case, and, for the closed-loop scenario,

ϕ̂f (tk,θj) =

[
−pTo,j(p)
Aj(p)

r(t), . . . ,
−pnTo,j(p)
Aj(p)

r(t),

Suo,j(p)

Aj(p)
r(t), . . . ,

pmSuo,j(p)

Aj(p)
r(t)

]>
t=tk

. (11)

The filtering can be done by solving the associated or-
dinary differential equation of each case via, e.g., Runge-
Kutta methods. However, this may add extra computational
burden to the procedures, as we are only interested in the
filtered input and reference at the time instants {tk}Nk=1. By
introducing a Delta transform description, the computations
in (9), (10) and (11) can be generalized for an arbitrary input
signal with arbitrary accuracy, thus reducing the interpolation
errors when filtering the input. The proposed algorithm for
computing ϕf (tk,θj) and ϕ̂f (tk,θj) at the j-th iteration of
the SRIVC and CLSRIVC methods goes as follows:

1) Given the sampling period h of y(t), (over) sample
u(t) (and possibly r(t) as well) by a factor S � 1.

2) From θj , form a state-space realization of the prefilters
of interest, namely piBj(p)/A

2
j (p) and pl/Aj(p) for

i = 1, . . . , n; l = 0, . . . ,m for the open loop frame-
work, and also piTo,j(p)/Aj(p) and plSuo,j(p)/Aj(p)
for closed-loop.

3) Compute the Delta equivalent [18] of the prefilters in
state-space form, i.e.,

x(kh+ h/S) = Aδx(kh) + Bδw(kh)

z(kh) = Cδx(kh) + Dδw(kh),

where z(kh) denotes the output of the filtering process
and w(kh) = u(kh) for open-loop, and w(kh) =
[u(kh), r(kh)]> for the closed-loop case.

4) Calculate the response at instants tk = kh of each filter
to the fast-sampled version of u(t) in the Delta domain:

x([k + 1]h)=AS
δ x(kh)+

S−1∑
l=0

AS−1−l
δ Bδw(h[k+ l/S])

z(kh)=Cδx(kh) + Dδw(kh).

The modified SRIVC and CLSRIVC methods with prefilters
computed as in steps 1 to 4 above calculate the filtered
regressor and instrument vectors accurately if the oversam-
pling rate S is large, and exact simulation is achieved for
S → ∞. In practice, we have found that sampling 100
times faster is usually enough to provide reliable estimates.
Due to potentially high sampling rates, the use of the Delta
operator is needed for ameliorating rounding errors and
ill-conditioning problems regarding the sensitivity of the
coefficients of the prefilters.

A. Particular case: Band-limited signals
The method described in the previous section can be used

in any situation when an arbitrary continuous-time input
signal is recorded. Here we propose an alternative procedure
to compute the filtering steps for when the input is a band-
limited signal. For the following approach, we only require
even samples of the input or reference signal, and over-
sampling is not required. Before we present the method, we
briefly review concepts of band-limited signals.

A band-limited signal is a continuous-time signal that
does not have energy above a certain frequency ωB . That
is, U(iω) = 0 for |ω| > ωB , where

U(iω) =

∫ ∞
−∞

u(t)e−iωtdt.

If u(t) is sampled every h seconds, where h < π/ωB , then
its discrete-time Fourier transform pair is given by

Uh(e
iωh)=h

∞∑
k=−∞

u(kh)e−iωkh⇐⇒u(kh)=

∫ π
h

−πh
Uh(e

iωh)
eiωkh

2π
dω.

These expressions can be exploited so that the discrete-time
Fourier transform is written in terms of the continuous-time
one, which is known as Poisson’s summation formula [19]

Uh(eiωh) =

∞∑
n=−∞

U

(
iω + i

2πn

h

)
.



Due to u(t) being band-limited, this formula indicates that
Uh(eiωh) = U(iω) for |ω| < π/h.

Our interest lies in computing the output of a single-input
multi-output (SIMO) linear system such as (10), (11) or the
last m+ 1 elements of (9), when the input u(t) or reference
r(t) are band-limited. Without loss of generality, we consider
an input u(t) and a SIMO transfer function H(p). In the
frequency domain, the continuous-time Fourier transform of
the output is Z(iω) = H(iω)U(iω). Therefore, the output
z(t) is also band-limited and Zh(eiωh) = Z(iω), also for
|ω| < π/h. Using these identities, we can reconstruct the
output of an LTI system with band-limited excitation. By
leveraging the inverse Fourier transform of Zh(eiωh) we have

Z(kh) =
1

2π

∫ π
h

−πh
H(iω)Uh(eiωh)eiωkhdω

=
1

π
Re

{∫ π
h

0

H(iω)Uh(eiωh)eiωkhdω

}
,

where we have used the fact that the Fourier transform of a
real signal is conjugate symmetric. Thus, the output can be
computed by solving N integrals. This is computationally
expensive, considering that such integration must be per-
formed at each iteration of the SRIVC algorithm and these
integrals usually do not have a closed form. Instead of this,
we evaluate its associated M+1-point Riemann sum

z(kh) ≈ 1

πh(M + 1)
Re

{
M∑
l=0

H

(
iπl

hM

)
Uh(ei

πl
M )ei

πlk
M

}
.

Since the input samples u(0), . . . , u([N−1]h) are known, we
can compute Uh(ei

πl
M ) as the zero-padded Discrete Fourier

Transform (DFT) of the input vector. More precisely,

Uh(ei
πl
M ) = h

N−1∑
k=0

u(kh)e−i
πlk
M .

Once {Uh(ei
πl
M )}Ml=0 is computed, the output vector

{z(kh)}N−1k=0 is obtained via the (zero-padded) inverse DFT
of H

(
iπl
hM

)
Uh(ei

πl
M ).

Remark 4.2: For the computation of the filtering step
described above, the choice of M dictates the accuracy of
the filtering procedure: a larger value of M provides more
accurate results at the expense of more arithmetic operations.

V. SIMULATION STUDIES

We now study the performance of the SRIVC and
CLSRIVC estimators under open and closed-loop examples
and compare them with their proposed alternatives with
regressor and instrument vectors computed via oversampling,
which will be denoted as SRIVC-os and CLSRIVC-os in
the sequel. The SRIVC and CLSRIVC estimators are com-
puted from the CONTSID toolbox version 7.3 for MATLAB
[20], under default initialization, tolerance ε = 10−10 and
MaxIter = 100. The commands are set to estimate the
best model within the correct model structure, and the monic
denominator of the SRIVC estimator given by the CONTSID
toolbox is converted to the form in (1) by dividing both
polynomials by the constant term in the denominator.
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Fig. 2. Test with chirp input signal. Sample means of each parameter with
1 standard deviation for SRIVC-os (red circles) and standard SRIVC (blue
crosses). The true parameter values are in dashed green.

A. Open-loop with a chirp signal input

Consider the second-order system

G∗(p) =
1.25

0.25p2 + 0.7p+ 1
, (12)

where the parameters of interest are a∗1 = 0.7, a∗2 = 0.25 and
b∗0 = 1.25. This system is excited with an up-chirp signal,
which is a continuous-time signal that increases in frequency
with time. These signals are widely used in signal processing
applications such as radar systems and seismology and have
been used for system identification [21], [22]. The chirp
signal used in this example is

u(t) = cos

(
f0

[
f1
f0

]t/Tf
2πt

)
,

where [f0, f1] = [0.1, 0.6][Hz] and Tf = 500[s] is the length
of one period of the chirp signal. We determine the true sys-
tem output using the explicit Runge-Kutta formulae RK5(4).
The output is sampled every h = 0.5[s] with S = 500, and
the measurement noise has variance 0.05, which corresponds
to approximately 10% of the energy of the noiseless output.
For the computation of the SRIVC-os estimate, we follow the
algorithm described in Section IV. The number of periods of
the input varies from 1 to 10, which is equivalent to sample
sizes ranging from 1000 to 10000, and 300 Monte Carlo runs
are performed for each sample size.

The empirical evidence in Figure 2 suggests that the pro-
posed procedure for computing the regressor and instrument
vectors leads to accurate estimates of the parameters of
interest, while the standard SRIVC method fails to deliver
statistically consistent estimates. This improvement in accu-
racy is not without a drawback in computational efficiency:
the total computation time of the SRIVC-os estimator tests is
30.2 [h], while the SRIVC estimates is computed in 1.3 [h].
The simulations are performed on a laptop with an Intel Core
i7-7600u 2.8Ghz processor.



102 103 104
0.1

0.15

0.2

0.25

102 103 104

10-6

102 103 104

0.6

0.65

0.7

CLSRIVC
CLSRIVC-reg-os
CLSRIVC-os
True parameter

102 103 104

10-4

CLSRIVC-reg-os
CLSRIVC-os

102 103 104

1.15

1.2

1.25

102 103 104
10-5

10-4

10-3

Fig. 3. Closed loop test. Left: Sample means of each parameter for
CLSRIVC (straight, red), CLSRIVC-reg-os (blue asterisks), CLSRIVC-os
(golden circles), and the true parameter (dashed green). Right: Sample
variances of each parameter for CLSRIVC-reg-os and CLSRIVC-os.

B. Closed-loop with a band-limited reference signal

We consider that the system in (12) is now in closed-
loop, where C(p) = (p + 3)/(5p), and y(t) is sampled at
the same rate as the previous example. The reference has
been generated by a discrete-time Gaussian white noise of
unit variance whose intersample behavior is given by a sinc
interpolation, and is thus band-limited. The Gaussian white
noise v(t) is assumed to stay constant between samples2

and has variance 0.01. The oversampling rate is set to
S = 100. Twenty different sample sizes are considered,
ranging logarithmically from N = 200 to N = 10000, and
300 Monte Carlo runs are performed for each value of N .

Figure 3 shows the sample means and sample variances
of each estimated parameter, for three algorithms: standard
CLSRIVC, CLSRIVC-os but with instrument vector com-
puted with a ZOH intersample behavior in r(tk) as in
(5) (labeled CLSRIVC-reg-os), and CLSRIVC-os (i.e., with
regressor (9) and instrument (11)). Note that for CLSRIVC-
os we compute the instrument vector following the procedure
detailed in Section IV-A with M = 100. The results show
that the oversampling procedure for computing the regressor
can cancel the bias in each parameter, independent on how
the instrument is formed. However, if the instrument is also
computed via oversampling, the variance of each parameter
is also reduced compared to the standard ZOH filtering
that is performed for the CLSRIVC-reg-os estimator. These
findings agree with the theoretical derivation in Section III
and Remark 4.1.

VI. CONCLUSIONS

In this paper, we have studied the effect of having a
misspecified intersample behavior of the input and refer-
ence signals in the SRIVC and CLSRIVC estimators in

2This hybrid formulation, consisting in the mixture between continuous-
time and discrete-time signals, is commonly used in closed-loop continuous-
time system identification; see e.g. [1, Chapter 5].

continuous-time system identification. These methods have
been proven to be inconsistent if the intersample behavior of
the signals are not taken into consideration. Our approach to
solve this problem consists in computing the filtering steps
of each method via over-sampling of arbitrary signals or
computing the filtering step exactly if the signal is band-
limited. Via numerical tests, we observe that our methods
offer a promising way to alleviate the asymptotic bias.
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