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aSchool of Electrical Engineering and Computing, University of Newcastle, Callaghan, NSW 2308, Australia

bDivision of Decision and Control Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of
Technology, Stockholm 10044, Sweden

Abstract

In this paper, we analyse the consistency of the Instrumental-Variable-based State Variable Filter (IVSVF) estimator by taking
into account the intersample behaviour of the input and output signals. It is found that when only sampled input and output
data are available for estimation, the IVSVF estimator is not consistent for any fixed sampling period due to the interpolation
error that arises from constructing the filtered output signal. A Bias-Eliminated IVSVF (BEIVSVF) estimator is then proposed
and shown to be consistent. The theoretical results developed in the paper are also discussed from a practical standpoint.
Simulations are performed to verify the performance of the proposed method as well as to support the theoretical results.
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1 Introduction

Dynamical systems in the physical world are generally
continuous-time (CT) in nature, hence it is more intu-
itive to describe these systems using CT models. CT sys-
tem identification can be classified into the direct and the
indirect approaches [1]. The indirect approach identifies
a discrete-time (DT) model and then transforms it to
CT, whereas the direct approach identifies a CT model
directly from sampled data. There are several advan-
tages associated with the direct approach [1], such as the
direct link between model coefficients and physical pa-
rameters of the system and the relative ease of identify-
ing models from irregularly sampled data. Nevertheless,
there are also issues associated with the direct approach,
such as the requirement for the time-derivatives of the
input and output. Direct differentiation of these signals
is not a viable option for obtaining time-derivatives as
measured signals are usually contaminated with noise.

The use of prefilters [15,24] was suggested to avoid
the problem of direct differentiation. This prefiltering
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(Cristian R. Rojas).

method is now known as the State Variable Filter (SVF)
approach [1]. The Least Squares (LS) method was then
used in combination with the SVF (LSSVF) to estimate
CT models [17]. After realising that the LSSVF esti-
mator may be asymptotically biased, the Instrumental-
Variable-based State Variable Filter (IVSVF) estima-
tor was introduced to alleviate this bias [18,19]. Early
research considered either a completely analog imple-
mentation (see e.g. [16]) or a hybrid analog-digital im-
plementation (see e.g. [17,19]) of the algorithm, i.e. the
filtered derivatives were obtained using analog filters
whereas the estimation algorithm was implemented in
a digital device.

Due to the advancement of digital computers, the use
of analog devices in the CT estimation algorithm im-
plementation became less popular, and DT estimation
methods became more prevalent. For instance, an iter-
ative Refined Instrumental Variable (RIV) method was
proposed in the late 70’s [20,22] for identifying DT sys-
tems. In addition, a CT version of this algorithm was
developed [23], known as the RIVC estimator, for identi-
fying hybrid Box-Jenkins models, i.e. where the system
model is in CT and the noise model in DT. Furthermore,
a simplified version of the RIVC estimator, known as the
SRIVC estimator [23], was also introduced for identify-
ing CT systems in an output error model structure. It
should be noted that the “continuous-discrete” imple-
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mentation of the SRIVC and RIVC estimators [23] had
assumed that only sampled input and output were avail-
able as measurements, i.e. the prefilters and the estima-
tors were both implemented digitally. This has been the
standard way of implementing direct CT estimator since
the prevalence of digital computers. In the current pa-
per, this approach is referred to as the digital implemen-
tation. It, however, raises an important implementation
issue regarding the intersample behaviour of the signals.

It has been proven that the SRIVC estimator is con-
sistent [8] under mild conditions if the intersample be-
haviour of the input in the regressor vector matches that
of the system input. Provided that the interpolation er-
ror that arises from constructing the filtered output does
not affect the non-singularity of the modified normal ma-
trix, the intersample behaviour of the output neither im-
pacts on the consistency nor the efficiency of the SRIVC
estimator as shown in [8] and [10], respectively. This is
due to the refinement of the prefilters in the SRIVC esti-
mator, which, for finite sample sizes, allows the same es-
timate to be obtained at the converging point regardless
of the intersample behaviour of the sampled output [10,
Lemma 6]. This phenomenon does not occur with the
IVSVF estimator since it uses a fixed choice of denom-
inator in its prefilter. Consequently, the digital imple-
mentation of the CT filter for the sampled output will
have an impact on the IVSVF estimates. This output
interpolation problem has been overlooked in the litera-
ture (see e.g. [1, p. 263] and [6]) where it is claimed that
the IVSVF estimator is asymptotically unbiased.

The objectives of this paper are twofold. Firstly, it is
proven that the IVSVF estimator is not consistent in
a digital implementation, i.e. when only sampled sig-
nals are available for estimation. This is due to the in-
terpolation error that arises when filtering the output.
The asymptotic bias of the IVSVF estimator, which has
not been addressed adequately in the existing litera-
ture, is demonstrated in simulation studies and more
importantly shown theoretically in the current paper.
The implications and consequences of filtering signals
in CT estimators are also highlighted. Secondly, a Bias-
Eliminated IVSVF (BEIVSVF) estimator is proposed to
eliminate the bias that arises in the digital implemen-
tation of the IVSVF estimator. The consistency of the
proposed estimator is shown theoretically and its perfor-
mance evaluated in simulation studies. The choice of the
hyperparameter, specifying the bandwidth of the SVF,
in the IVSVF and BEIVSVF estimators is then discussed
thoroughly with respect to the theoretical results devel-
oped in the current paper. In addition, the practical im-
plications of using the estimators can be more easily re-
vealed from the established theorems and therefore are
also discussed.

This paper is organised as follows. Section 2 highlights
the differences between the classical analog-digital im-
plementation and the modern digital implementation

of the IVSVF estimator. This is followed by Section 3
where the consistency analysis of the IVSVF estimator
is presented. The proposed BEIVSVF estimator and its
consistency analysis are given in Section 4. Section 5
provides simulation results that support the theoretical
analyses, and the paper is concluded in Section 6.

2 Preliminaries

In this section, the CT system and model definitions
are provided with respect to two different implementa-
tions of the IVSVF estimator. The first one is a classi-
cal analog-digital implementation that employs analog
filtering of the input and output signals followed by a
digital estimation procedure. The second one is a digital
implementation, where both the filtering of the signals
and estimation procedure are performed digitally.

2.1 Classical analog-digital implementation of IVSVF

Consider a linear time-invariant CT system

S :

x∗(t) =
B∗(p)

A∗(p)
u(t)

y(t) = x∗(t) + v(t),
(1)

where p is the differential operator, i.e. py(t) = d
dty(t),

x∗(t) the noise-free system output, u(t) the system input
and v(t) the additive noise on the output. The system
numerator and denominator polynomials are assumed
coprime with orders given bym∗ and n∗ respectively, i.e.

B∗(p) = b∗0p
m∗

+ b∗1p
m∗−1 + · · ·+ b∗m∗ ,

A∗(p) = a∗1p
n∗

+ a∗2p
n∗−1 + · · ·+ a∗n∗p+ 1,

with the system parameter vector given by

θ∗ :=
[
a∗1 . . . a

∗
n∗ b∗0 . . . b

∗
m∗

]>
.

A CT model is needed in order to derive the classical
LSSVF estimator, i.e.

M : y(t) =
B(p)

A(p)
u(t) + e(t) (2)

with coprime numerator and denominator polynomials,

B(p) = b0p
m + b1p

m−1 + · · ·+ bm,

A(p) = a1p
n + a2p

n−1 + · · ·+ anp+ 1,
(3)

where the model parameter vector is given by

θ :=
[
a1 . . . an b0 . . . bm

]>
,
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and e(t) is the residual.

To highlight the difference between the analog and dig-
ital implementations, the following two notations are
adopted.

Notation 1 A CT signal, x(t), is filtered prior to being
sampled when the following filtering notation is used, i.e.

{Q(p)x(t)}t=tk
,

where Q(p) is an arbitrary CT transfer function. Square
brackets are used when vectors are considered.

Notation 2 A mixed notation of CT operators and DT
data, i.e.

Q(p)x(tk),

implies that the sampled signal x(tk) is interpolated with
some intersample behaviour assumption such as a zero-
order hold (ZOH) or a first-order hold (FOH), and the
filtered signal is then sampled at tk.

Note that the filtering convention used in Notation 2
has been the standard way of expressing DT data being
filtered by CT transfer functions in the existing literature
(see e.g. [1]).

The model in (2) can be rewritten as

A(p)y(t) = B(p)u(t) +A(p)e(t). (4)

To avoid direct differentiation of the signals in (4), the
SVF approach [24,17] is considered, where a linear filter,
i.e. the SVF with λ > 0, given by

1

F (p)
=

1

(p/λ+ 1)n
=

1

f1pn + f2pn−1 + · · ·+ 1
, (5)

is applied to both sides of (4), that is

1

F (p)
A(p)y(t) =

1

F (p)
B(p)u(t) +

1

F (p)
A(p)e(t). (6)

The relationship in (6) is equivalent to that of (4) in
terms of the unknown parameters, θ, subsequent to a
time, t0, provided that the initial condition of the SVF
has negligible effects on the filtered input and output af-
ter t0. Furthermore, the hyperparameter, λ, is required
to be chosen such that the bandwidth of 1/F (p) con-
tains the bandwidth of the system 1 as suggested in the
existing literature (see e.g. [19]).

1 This point will be discussed in detail in Section 4.3 as it
is a loose statement on the requirement of the bandwidth of
the SVF.

Since the system is assumed to be time-invariant, the lin-
ear filter 1/F (p) commutes with A(p) and B(p), thus (6)
can be rewritten as

a1ẙ
(n)
f (t) + · · ·+ anẙ

(1)
f (t) + ẙf (t)

= b0u
(m)
f (t) + · · ·+ bmuf (t) + η(t), (7)

where ẙ
(i)
f (t) = pi

F (p)y(t), u
(i)
f (t) = pi

F (p)u(t) and η(t) is

the filtered residual vector. The filtered outputs in (7) are

accentuated with a circle, i.e. ẙ
(i)
f , to distinguish the sig-

nals generated by an analog filter from those generated

by a digital filter, i.e. y
(i)
f . This digitally filtered output

will be encountered in Section 2.2. Note that these two
signals are different even if the same transfer function
is used since the intersample behaviour of the output is
unknown in a digital implementation, thus the interpo-
lation is never exact. Filtered input signals do not use
this notation since the input intersample behaviour is
assumed to be known exactly in the analysis 2 .

Historically, an analog-digital implementation of this CT
estimator was employed (see e.g. [19]), where the system
input and output are filtered by analog SVF’s to obtain
the filtered derivatives, then the signals are sampled and
the estimator is implemented in a digital device. Hence,
after sampling the filtered signals regularly at t = tk, (7)
can be expressed in a linear regression form as

ẙf (tk) = ϕ̊>f (tk)θ + η(tk), (8)

where the regressor vector and filtered output in sampled
form are given by

ϕ̊f (tk) =
[
− pn

F (p)y(t) . . . − p
F (p)y(t)

pm

F (p)u(t) . . . 1
F (p)u(t)

]>
t=tk

, (9)

and

ẙf (tk) =

{
1

F (p)
y(t)

}
t=tk

, (10)

respectively. The regressor vector in (9) is accentuated
with a circle as it contains the filtered output generated
using analog filters. Similarly, this notation will also be

applied to the resulting estimators, θ̊ls and θ̊iv, as shown
in (11) and (12).

Now, from N samples of the input and output filtered
derivatives, the LSSVF estimator is given by

θ̊ls =

[
1

N

N∑
k=1

ϕ̊f (tk)ϕ̊>f (tk)

]−1 [
1

N

N∑
k=1

ϕ̊f (tk)ẙf (tk)

]
.

(11)

2 If the intersample behaviour of the input is not known
exactly, then the estimator will be inconsistent, which can
be inferred from the results in [8].
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It is well known that, in CT system identification, the
LS estimator in (11) is biased even if the equation error
is i.i.d. white noise [1]. This asymptotic bias problem
can be alleviated by the use of the IVSVF estimator [19]
given by

θ̊iv=

[
1

N

N∑
k=1

ϕ̂f (tk, θ̊ls)ϕ̊
>
f (tk)

]−1[
1

N

N∑
k=1

ϕ̂f (tk, θ̊ls)ẙf (tk)

]
,

(12)

where ϕ̂f (tk, θ̊ls) is known as the instrument vector,
which is chosen to be highly correlated with the input
but uncorrelated with the disturbance. One option to
form the instrument vector is to replace the measured
output in the regressor by the estimated model output,
i.e.

ϕ̂f (tk, θ̊ls) =
[
− pn

F (p)xls(t) . . . −
p

F (p)xls(t)

pm

F (p)u(t) . . . 1
F (p)u(t)

]>
t=tk

, (13)

where xls(t) is known as the auxiliary signal. It is gen-
erated using an auxiliary model with parameters given
by the LSSVF estimator (11).

2.2 Digital implementation of IVSVF

It is important to reiterate that the LSSVF and IVSVF
estimators discussed in Section 2.1 were originally de-
rived for a CT model where the prefiltering was per-
formed with analog filters. Since the prevalence of digital
computers, both the prefiltering process and estimation
algorithms are implemented digitally. In this section, we
will make some modifications to the CT model descrip-
tion and the SVF methods to reflect the nature of the
digital implementation of the estimators.

In a digital implementation of the LSSVF and IVSVF
estimators, the intersample behaviour assumption of the
signals when performing filtering options becomes im-
portant. We will assume that the intersample behaviour
of the system input is known such that the filtered ver-
sion of the input can be reconstructed exactly and only
analyse the consistency of the IVSVF estimator with re-
spect to the intersample behaviour of the output. This
assumption is imposed as it has been shown [8] that the
SRIVC estimator, which can be thought of as an itera-
tive and refined version of the IVSVF estimator, is gener-
ically inconsistent when an incorrect input intersample
behaviour is used.

Since only sampled input and output are available in
practice, the output observation equation is expressed as

y(tk) =

{
B∗(p)

A∗(p)
u(t)

}
t=tk

+ v(tk),

where the additive noise on the output, v(tk), is a zero-
mean DT stochastic random process.

In the digital implementation of the direct CT estima-
tors, it is more natural to adopt Notation 2 to represent
filtered signals due to the nature of the sampled data.
However, if the intersample behaviour of the input is
known exactly, then Notations 1 and 2 are equivalent in
terms of the filtered signals they represent. Notation 1
is chosen to represent the filtered input in the current
paper in order to combine the two types of filtering re-
quired when representing the filtered system output in
the consistency analysis. This point will be more thor-
oughly explained when encountered in Section 3.1.

For a digital implementation of the CT estimator, the
model of the system is parameterised in (14) with a
proper transfer function, i.e.

M :

x(tk) =

{
B(p)

A(p)
u(t)

}
t=tk

y(tk) = x(tk) + e(tk),

(14)

whereB(p) andA(p) are given in (3). Since the SVF pre-
filtering is performed after the data has been sampled,
the linear regression model in (8) is modified to be

yf (tk) = ϕ>f (tk)θ + ε(tk), (15)

where the regressor is given by

ϕf (tk) =
[
− pn

F (p)y(tk) . . . − p
F (p)y(tk){

pm

F (p)u(t)
}
t=tk

. . .
{

1
F (p)u(t)

}
t=tk

]>
, (16)

and the filtered output is

yf (tk) =
1

F (p)
y(tk). (17)

It is important to note the difference between the filtered
outputs in (16) and (17) from those in (9) and (10).
The residual term in (15) is known as the generalised
equation error (GEE) of the model [19], which can be
expressed as

ε(tk) =
A(p)

F (p)
y(tk)−

{
B(p)

F (p)
u(t)

}
t=tk

. (18)

The LSSVF estimator minimises the sum of squares of
the GEE of the model and its digital implementation
version is obtained by modifying (11), i.e.

θls =

[
1

N

N∑
k=1

ϕf (tk)ϕ>f (tk)

]−1 [
1

N

N∑
k=1

ϕf (tk)yf (tk)

]
.
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The IVSVF estimator is employed to reduce the bias
caused by the correlation between the LSSVF regressor
vector and the residual. The digital implementation ver-
sion of (12) is given by

θiv=

[
1

N

N∑
k=1

ϕ̂f (tk,θls)ϕ
>
f (tk)

]−1[
1

N

N∑
k=1

ϕ̂f (tk,θls)yf (tk)

]
,

(19)

where the regressor vector ϕf (tk) is given by (16), and
the instrument vector is

ϕ̂f (tk,θls) =
[
− pnBls(p)

F (p)Als(p)u(t) . . . − pBls(p)
F (p)Als(p)u(t)

pm

F (p)u(t) . . . 1
F (p)u(t)

]>
t=tk

. (20)

In the sequel, the argument θls will be omitted in the
digital implementation version of the instrument vector
for simplicity of notation, that is, (20) will be written as
ϕ̂f (tk). Note that the IVSVF estimator in (19) is imple-
mented as a two-step method (i.e. LS followed by IV).
An iterative version of this estimator [19] also exists and
can be implemented with a fixed SVF by updating the
auxiliary model in the instrument vector. However, as
far as the consistency analysis is concerned in Section 3,
the estimator will be considered non-iterative since it
has been shown [8] that the instrument vector does not
affect the consistency of the estimator as long as some
mild conditions are satisfied, e.g. when chosen in the
form of (20). Nevertheless, the covariance of the estima-
tor can be affected [10].

Next, we provide a definition of generic non-singularity
[12], which is closely related to the concept of generic
consistency in Sections 3 and 4, and a lemma that ex-
amines this property.

Definition 1 Consider an n × n matrix R(ρ), which
depends on a vector ρ belonging to an open set Ω of the
Euclidean spaceRnρ . Then, R is generically non-singular
with respect to ρ ∈ Ω if the set {ρ : ρ ∈ Ω, rank R(ρ) <
n} has Lebesgue measure zero in Ω.

Lemma 1 Consider the matrix R and the set Ω given
in Definition 1. Assume that

(i) The elements of R are analytic functions of every
element of ρ ∈ Ω.

(ii) There is a vector ρ∗ ∈ Ω such that R(ρ∗) is non-
singular.

Then, R(ρ) is generically non-singular with respect to
ρ ∈ Ω.

Proof of Lemma 1 By using Proposition 1 on the zero

set of real analytic functions in [7], the proof of Lemma 1
then follows directly from the proof of Lemma 1 in [13].

3 Analysis of the IVSVF Estimator

This section provides the theoretical analysis showing
that the digital implementation of the IVSVF estimator
is not consistent. The implications of filtering sampled
data in CT system identification are also discussed.

3.1 Consistency Analysis of the IVSVF Estimator

We begin the analysis by expressing the filtered regressor
given in (16) as

ϕf (tk) = ϕ̃f (tk) + vf (tk) + ∆(tk),

where vf (tk) contains the filtered version of the additive
noise on the output, ϕ̃f (tk) is the noise-free version of
ϕ̊f (tk) in (9), i.e.

ϕ̃f (tk) =
[
− pnB∗(p)

F (p)A∗(p)u(t) . . . − pB∗(p)
F (p)A∗(p)u(t)

pm

F (p)u(t) . . . 1
F (p)u(t)

]>
t=tk

,

and ∆(tk) is a vector that contains the interpolation
error that arises from constructing the filtered output,
which is given by the difference between the noise-free
versions of ϕf (tk) and ϕ̊f (tk), that is

∆i(tk)=


{
pn+1−iB∗(p)
F (p)A∗(p) u(t)

}
t=tk
− pn+1−i

F (p)

{
B∗(p)
A∗(p)u(t)

}
t=tk

,

i = 1, . . . , n

0, otherwise.

Therefore, we have

E
{
ϕ̂f (tk)ϕ>f (tk)

}
= E

{
ϕ̂f (tk)ϕ̃>f (tk)

}
+ E

{
ϕ̂f (tk)∆>(tk)

}
+ E

{
ϕ̂f (tk)v>f (tk)

}
.

(21)

Note that we will refer to (21) as the modified normal
matrix as IV methods replace the first regressor vector of
the normal matrix in the LS method by the instrument
vector.

Next, we state the assumptions and a lemma required
in Theorems 1 and 2 regarding the consistency of the
IVSVF and BEIVSVF estimators.

Assumption 1 The system, B∗(p)
A∗(p) , is proper (n∗ ≥ m∗)

and asymptotically stable with A∗(p) and B∗(p) being
coprime.

5



Assumption 2 The input sequence, u(tk), and distur-
bance, v(ts), are stationary and mutually independent for
all k and s.

Assumption 3 The input sequence, u(tk), is persis-
tently exciting of order no less than 2n+ 1.

Assumption 4 All the zeros of Aiv(p) and Als(p) have
strictly negative real parts, n ≥ m, with Aiv(p) and
Biv(p) being coprime as well as Als(p) and Bls(p) being
coprime.

Assumption 5 The degrees of the polynomials in the
model satisfy min(n− n∗,m−m∗) = 0.

Assumption 6 The sampling frequency is more than
twice that of the largest imaginary part of the zeros of
F (p)A∗(p).

Assumption 3 means that the support of the input
spectral distribution function contains at least 2n + 1
points [5]. Unstable poles may arise when estimating
the parameters of transfer functions. A simple way to
deal with this is to reflect the unstable poles across the
imaginary axis, which has been extensively used for
direct CT estimators (see e.g. [1, Chapter 4]). A more
sophisticated way of dealing with the instability issue
is to constrain the estimated parameters in a convex
stability domain as shown in [3]. Hence, Assumption 4
is commonly satisfied in practice.

Lemma 2 Under Assumptions 1 – 6, the modified nor-
mal matrix (21) of the IVSVF estimator is generically
non-singular with respect to the system and prefilters if∥∥∥E{ϕ̂f (tk)∆>(tk)

}∥∥∥
2
< σmin

(
E
{
ϕ̂f (tk)ϕ̃>f (tk)

})
,

(22)
where ‖·‖2 denotes the induced 2-norm of the matrix and
σmin(·) is the smallest singular value of the matrix.

Proof of Lemma2 The generic non-singularity of (21)
can be proven using the same procedure as in [9].

Lemma 2 ensures the existence of a solution for the
IVSVF estimator. This can be achieved without having
an exact interpolation of the filtered output. The con-
dition in (22) is a requirement on the size of the inter-
polation errors that arise from constructing the filtered
derivatives of the output, which depend on both the sam-
pling period and the interpolation method. Linear inter-
polation or spline methods are usually recommended for
constructing the filtered output depending on the nature
of the output signal. In a practical situation, the non-
singularity of (21) is often preserved for low order sys-
tems without the need for fast sampling. For high order

systems, fast sampling rates should be considered due
to the construction of higher order derivatives, which
require more samples per cycle of the highest input fre-
quency to represent the filtered derivatives adequately.

Next, we present a theorem that examines the consis-
tency property of the IVSVF estimator.

Theorem 1 Consider the IVSVF estimator defined
in (19), and suppose Assumptions 1 – 6 and condi-
tion (22) hold. Then, for a ZOH or FOH system input
that can be reconstructed exactly, the IVSVF estimator
is generically inconsistent with respect to the system
and prefilters for any fixed sampling period when the
algorithm is implemented based only on sampled in-
put/output data.

Proof of Theorem 1 Since ϕf (tk) and ϕ̂f (tk) in
the modified normal matrix (19) are jointly stationary
stochastic processes, according to [11, Lemma 3.1],

1

N

N∑
k=1

ϕ̂f (tk)ϕ>f (tk)→ E
{
ϕ̂f (tk)ϕ>f (tk)

}
(23)

with probability 1. According to Lemma 2, (23) is gener-
ically non-singular. Together with Assumption 5, this
implies that there exists a unique solution to (19) asymp-
totically.

Now, the IVSVF estimator, θiv, satisfies (19), which
means that for large sample size, we have

1

N

N∑
k=1

ϕ̂f (tk)
(
yf (tk)−ϕ>f (tk) θiv

)
= 0

1

N

N∑
k=1

ϕ̂f (tk)ε(tk,θiv) = 0. (24)

The GEE in (24) can be written as

ε(tk,θiv)=
Aiv(p)

F (p)

{
B∗(p)

A∗(p)
u(t)

}
t=tk

−
{
Biv(p)

F (p)
u(t)

}
t=tk

+
Aiv(p)

F (p)
v(tk). (25)

As the sample size, N , approaches infinity, by [11,
Lemma 3.1], (24) can be expressed as

E{ϕ̂f (tk)ε(tk,θiv)} = 0. (26)

In order to proceed, the transfer functions associated
with the input in (25) are required to be combined to-
gether. It is important to note that the first term on the
right-hand side of (25) uses both Notations 1 and 2. The
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difficulty is that, in the digital implementation of the
algorithm, B∗(p)/A∗(p) and Biv(p)/Aiv(p) are discre-
tised according to the intersample behaviour of the in-
put, whereas Aiv(p)/F (p) is discretised according to the
assumed intersample behaviour of the output. Hence,
only the DT equivalents of these transfer functions can
be combined despite the fact that they are expressed as
CT transfer functions. To overcome this difficulty, recall
from Section 2.1 that the output filtered by an analog
SVF is given by

ẙf (tk) =

{
1

F (p)

B∗(p)

A∗(p)
u(t)

}
t=tk

+

{
1

F (p)
v(t)

}
t=tk

.

(27)
Define ε∗u(tk,θiv) to be the reconstruction error of the
noise-free filtered output, which can be viewed as a func-
tion of the system input, i.e.

ε∗u(tk,θiv):=
Aiv(p)

F (p)

{
B∗(p)

A∗(p)
u(t)

}
t=tk

−
{
Aiv(p)

F (p)

B∗(p)

A∗(p)
u(t)

}
t=tk

.

(28)

Now, we can express the GEE in (25) as

ε(tk,θiv) =

{
Aiv(p)

F (p)

B∗(p)

A∗(p)
u(t)

}
t=tk

−
{
Biv(p)

F (p)
u(t)

}
t=tk

+ ε∗u(tk,θiv) +
Aiv(p)

F (p)
v(tk)

=

{
Aiv(p)B∗(p)−Biv(p)A∗(p)

A∗(p)F (p)
u(t)

}
t=tk

+ ε∗u(tk,θiv) +
Aiv(p)

F (p)
v(tk). (29)

Let

Aiv(p)B∗(p)−Biv(p)A∗(p) = h0p
r + h1p

r−1 + · · ·+ hr
:= H(p), (30)

where r = max(n + m∗, n∗ + m) = n + m. The GEE
in (29) is then expressed as

ε(tk,θiv) =

{
u>d (t)

A∗(p)F (p)

}
t=tk

h + ε∗u(tk,θiv) +
Aiv(p)

F (p)
v(tk),

(31)

where

ud(t) :=
[
u(n+m)(t) u(n+m−1)(t) . . . u(t)

]>
, (32)

and

h =
[
h0 h1 . . . hn+m

]>
.

The filtered instrument vector can be written as

ϕ̂f (tk) = S(−Bls, Als)

{
ud(t)

Als(p)F (p)

}
t=tk

, (33)

where S(−Bls, Als) is a (n+m+1)×(n+m+1) Sylvester
matrix formed using the coefficients ofBls(p) andAls(p)
(see e.g. [8] for the structure of the Sylvester matrix).
This matrix is non-singular under the coprime condition
in Assumption 4 according to [12, Lemma A3.2]. Now,
substituting (33) and (31) into (26), we obtain

E
{
ϕ̂f (tk)ε(tk,θiv)

}
= S(−Bls, Als) (Φh + Ψu + Ψv)

= 0,

where

Φ = E

{{
ud(t)

Als(p)F (p)

}
t=tk

{
u>d (t)

A∗(p)F (p)

}
t=tk

}
,

Ψu = E

{{
ud(t)

Als(p)F (p)

}
t=tk

ε∗u(tk,θiv)

}
,

Ψv = E

{{
ud(t)

Als(p)F (p)

}
t=tk

Aiv(p)

F (p)
v(tk)

}
.

Under Assumption 2, Ψv = 0. It can be shown in
a similar way as in [8, Theorem 1] that Φ is generi-
cally non-singular. Together with the non-singularity of
S(−Bls, Als), this then allows the coefficients of H(p)
to be represented by

h = −Φ−1Ψu.

Note that Ψu 6= 0 since the expression ε∗u(tk,θiv) given
by (28) is input-dependent and generally not equal to
zero in a digital implementation of the algorithm as a CT
output cannot be reconstructed exactly. Hence, h 6= 0
and from (30), we obtain

Biv(p)

Aiv(p)
=
B∗(p)

A∗(p)
− H(p)

Aiv(p)A∗(p)
,

i.e. the IVSVF solution does not correspond to the
true system parameters asymptotically. Therefore, the
IVSVF estimator (19) is not consistent. 2

3.2 Filtering Sampled Data in Direct CT System Iden-
tification Methods

In practical situations, an important implication of The-
orem 1 is that prefiltering should be performed with cau-
tion when using direct CT identification methods with
sampled data. For instance, some methods may require
the sampled input and/or output signals to be filtered
prior to estimation, such as in the case of estimating a
time delay (see e.g. [4]). It should be noted that if these
prefilterings are performed prior to the estimation pro-
cedure, then the resultant estimate will most likely be
biased since the intersample behaviours of the filtered
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signals are no longer known exactly. Thus, in situations
where data prefiltering is required, it is recommended
to combine any extra filtering of the sampled data with
the existing prefiltering procedures by modifying the
SRIVC/RIVC/IVSVF algorithms, i.e. the extra filters
should be combined with the CT filters in the regressor
and instrument vectors of the algorithms prior to dis-
cretisation. This means that for the SRIVC and RIVC
estimators, the consistency property can be preserved
since the intersample behaviour assumption of the input
signal is not violated [8]. For the same reason, the exist-
ing bias on the IVSVF estimate, due to the output in-
terpolation error, would not increase as compared to the
estimates computed without the extra filtering steps.

4 The Bias-Eliminated IVSVF Estimator

A Bias-Eliminated IVSVF (BEIVSVF) estimator is pro-
posed in this section to remove the asymptotic bias of
the IVSVF estimator due to the interpolation error that
arises from constructing the filtered output. The consis-
tency property of the proposed BEIVSVF estimator is
then proven in Section 4.2. The algorithm is of an iter-
ative nature and is more computationally efficient than
the well known SRIVC algorithm as it does not require
the inverse of the modified normal matrix to be updated
at every iteration. This computation efficiency, however,
is not obtained without trading off some other proper-
ties of the estimator. These trade-offs are discussed at
the end of this section.

4.1 The BEIVSVF Algorithm

It has been shown in the proof of Theorem 1 that the
bias of the IVSVF estimator is caused by the output
interpolation error, ε∗u(tk,θiv), in (28) being correlated
with the input in the instrument vector. The idea of
the BEIVSVF estimator is to approximate this interpo-
lation error, estimate its corresponding parameter bias
and then correct the current estimate with this bias. This
can be done in an iterative manner, where the (j+ 1)-th
iteration of the BEIVSVF estimator is given by

θj+1=θj+

[
N∑

k=1

ϕ̂f (tk)ϕ>f (tk)

]−1[ N∑
k=1

ϕ̂f (tk)εu(tk,θj)

]
(34)

with ϕ̂f (tk) and ϕf (tk) given by (20) and (16) respec-
tively, and

εu(tk,θj) =
Aj(p)

F (p)

(
y(tk)−

{
Bj(p)

Aj(p)
u(t)

}
t=tk

)
.

Note that the initial estimate for the BEIVSVF estima-
tor, θ1, is obtained using the IVSVF estimator (19).

The algorithm is stopped when either a maximum num-
ber of iterations is reached or a measure of the relative
error is smaller than a specified tolerance, i.e.

‖θj+1 − θj‖2
‖θj‖2

< ε. (35)

4.2 Consistency Analysis of the BEIVSVF Estimator

In this section, the consistency property of the BEIVSVF
estimator is established in Theorem 2. In the proof of
Theorem 2, we extend the denominator polynomial of
the SVF, F (p), to be any stable polynomial with order n.
This assumption is made without any loss of generality
since the denominator polynomial in (5) is considered as
a particular choice of the generalised F (p).

Theorem 2 (Generic consistency of the BEIVSVF
estimator) Consider the BEIVSVF estimator in (34)
with the denominator of the SVF being an arbitrary stable
n-th order polynomial. Suppose Assumptions 1 – 6 hold.
Then, for a ZOH or FOH input, the following statements
are true:

(1) The modified normal matrix, E{ϕ̂f (tk)ϕ>f (tk)}, is
generically non-singular with respect to the system
and prefilters, provided that the condition in (22) is
satisfied.

(2) If the BEIVSVF estimator converges as the itera-
tions, j, tends to infinity for sufficiently large sam-
ple size, N , then the true parameter, θ∗, is generi-
cally (with respect to the system and prefilters) the
unique converging point.

(3) As the sample size, N , approaches infinity, the algo-
rithm locally converges to θ∗ provided that the ma-
trix I −Q−1R has all eigenvalues with magnitude
less than 1, where I is the identity matrix with di-
mension n+m+ 1,

Q = E
{
ϕ̂f (tk)ϕ>f (tk)

}
, (36)

and

R = E

{
ϕ̂f (tk)

Ā(p)

F (p)

{[
−p

nB̄(p)

Ā2(p)
. . . −pB̄(p)

Ā2(p)

pm

Ā(p)
. . .

1

Ā(p)

]
u(t)

}
t=tk

}
. (37)

Proof of Theorem 2, Statement 1 Since the mod-
ified normal matrix does not get updated in the
BEIVSVF estimator, its generic non-singularity follows
from Lemma 2. 2

8



Proof of Theorem 2, Statement 2 Let the converg-
ing point of the BEIVSVF estimator be defined as

θ̄ := lim
j→∞

θj ,

and let the corresponding model polynomials at the con-
verging point be denoted as Ā(p) and B̄(p). Then, it can
be seen from (34) that the BEIVSVF estimator at θ̄ sat-
isfies

θ̄ = θ̄ +

[
N∑

k=1

ϕ̂f (tk)ϕ>f (tk)

]−1 [ N∑
k=1

ϕ̂f (tk)εu(tk, θ̄)

]

= θ̄ +

[
N∑

k=1

ϕ̂f (tk)ϕ>f (tk)

]−1 [ N∑
k=1

ϕ̂f (tk)

× Ā(p)

F (p)

({
B∗(p)

A∗(p)
u(t)

}
t=tk

+ v(tk)−
{
B̄(p)

Ā(p)
u(t)

}
t=tk

)]
.

(38)

As N → ∞, the sums in (38) can be replaced by their
corresponding expected values [11, Lemma 3.1]. Since
E{ϕ̂f (tk)ϕ>f (tk)} is non-singular according to State-

ment 1, (38) can be rearranged to be

E

{
ϕ̂f (tk)

Ā(p)

F (p)

{
B∗(p)

A∗(p)
u(t)− B̄(p)

Ā(p)
u(t)

}
t=tk

}

+ E
{
ϕ̂f (tk)

Ā(p)

F (p)
v(tk)

}
= 0. (39)

By following the same procedure as [8, Theorem 1, State-
ment 2], it can be shown that

E
{
ϕ̂f (tk)

Ā(p)

F (p)
v(tk)

}
= 0

under Assumption 2. Hence, (39) simplifies to

E

{
ϕ̂f (tk)

Ā(p)

F (p)

{
B∗(p)

A∗(p)
u(t)− B̄(p)

Ā(p)
u(t)

}
t=tk

}
= 0,

which can also be written as

S(−Bls, Als)Φ̄h = 0,

where S(−Bls, Als) is the Sylvester matrix constructed
using the parameters of the LSSVF estimator, ud(t) is
given by (32), h is the (n+m+ 1)× 1 vector containing
the coefficients of the polynomial H(p) = A∗(p)B̄(p) −

B∗(p)Ā(p) in descending order of degree, and

Φ̄ := E

{{
ud(t)

Als(p)F (p)

}
t=tk

Ā(p)

F (p)

{
u>d (t)

A∗(p)Ā(p)

}
t=tk

}
.

(40)

Now, consider the set of parameters that describe Als(p)
and F (p), i.e.

Ω = {(als1 , . . . , alsn , f1, . . . , fn) ∈ R2n :

Als(p), F (p) are stable polynomials}.

Define Φ̄
∗

as the matrix Φ̄ in (40) with Als(p) = A∗(p)
and Ā(p) = F (p), that is

Φ̄
∗

:= E

{{
ud(t)

A∗(p)F (p)

}
t=tk

{
u>d (t)

A∗(p)F (p)

}
t=tk

}
.

Then, Φ̄
∗

can be shown to be positive definite by [8,
Lemma 7] for a FOH input signal with persistent excita-
tion order no less than 2n+ 1. The persistent excitation
order can be relaxed to 2n for a ZOH input signal if the
model is strictly proper. By following the same proce-
dure as [8, Lemma 9], we can show that, for a fixed input
and Ā(p), Φ̄ is an analytic function of the parameters

in Ω. Together with Φ̄
∗

being positive definite, we can
conclude that Φ̄ is generically non-singular with respect
to Ω by Lemma 1. Hence, (40) implies h = 0, which in
turn means that

B̄(p)

Ā(p)
=
B∗(p)

A∗(p)
,

i.e. the converging point is generically unique and corre-
sponds to the true parameters. 2

Proof of Theorem 2, Statement 3 Now, we examine
how the BEIVSVF estimate behaves around the con-
verging point. The BEIVSVF estimate at the (j + 1)-th
iteration is given by

θj+1 = θj+

[
N∑

k=1

ϕ̂f (tk)ϕ>f (tk)

]−1 [ N∑
k=1

ϕ̂f (tk)εu(tk,θj)

]
,

where

εu(tk,θj) =
Aj(p)

F (p)

(
y(tk)−

{
Bj(p)

Aj(p)
u(t)

}
t=tk

)
.
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Linearising θj+1 around θ̄ gives

θj+1 = θ̄ +
∂θj
∂θj

∣∣∣∣
θj=θ̄

(θj − θ̄)

+

[
N∑

k=1

ϕ̂f (tk)ϕ>f (tk)

]−1 [ N∑
k=1

ϕ̂f (tk)εu(tk, θ̄)

]

+

[
N∑

k=1

ϕ̂f (tk)ϕ>f (tk)

]−1N∑
k=1

ϕ̂f (tk)
∂εu(tk,θj)

∂θj

∣∣∣∣
θj=θ̄

(θj − θ̄)

+ op(‖θj − θ̄‖),

which we then expand to obtain

θj+1 = θ̄ + (θj − θ̄)

+

[
N∑

k=1

ϕ̂f (tk)ϕ>f (tk)

]−1[ N∑
k=1

ϕ̂f (tk)εu(tk, θ̄)

]
(41a)

+

[
N∑

k=1

ϕ̂f (tk)ϕ>f (tk)

]−1[ N∑
k=1

ϕ̂f (tk)
∂Aj(p)

∂θj

∣∣∣∣
θj=θ̄

× 1

F (p)

(
y(tk)−

{
B̄(p)

Ā(p)
u(t)

}
t=tk

)]
(θj − θ̄) (41b)

−

[
N∑

k=1

ϕ̂f (tk)ϕ>f (tk)

]−1 [ N∑
k=1

ϕ̂f (tk)
Ā(p)

F (p)

×

{
∂

∂θj

(
Bj(p)

Aj(p)

)∣∣∣∣
θj=θ̄

u(t)

}
t=tk

]
(θj − θ̄) (41c)

+ op(‖θj − θ̄‖), (41d)

where op(·) is the small-o notation that indicates conver-
gence to zero in probability and is used to capture the
linearisation error.

AsN →∞, the sums in (41) can be replaced by their cor-
responding expectations [11, Lemma 3.1]. Then, (41a)
goes to zero since the expression is evaluated at the con-
verging point. By following the same procedure as [8,
Theorem 1, Statement 3], (41b) can be shown to be zero
asymptotically since the instrument vector is uncorre-
lated with some filtered version of the additive noise
v(tk). Differentiating the transfer function in (41c) with
respect to θj , we obtain

∂

∂θj

(
Bj(p)

Aj(p)

)∣∣∣∣
θj=θ̄

=
1

Ā(p)

[
−pn B̄(p)

Ā(p)
· · · −p B̄(p)

Ā(p)
pm · · · 1

]
.

Hence, the second sum in (41c) becomes R in (37).
Now, (41) simplifies to

θj+1 − θ̄ = (I−Q−1R)(θj − θ̄) + op(‖θj − θ̄‖), (42)

where Q and R are given by (36) and (37) respectively.
Provided that all the eigenvalues of I−Q−1R have mag-
nitude less than 1, θj+1 is locally convergent to θ∗. 2

The BEIVSVF estimator can also be shown to be generi-
cally consistent for a CT multisine input, which is stated
in the following remark.

Remark 3 The results in Theorem 2 still hold for a
CT multisine input. Statement 1 and the generic non-
singularity of (40) in Statement 2 can be shown by fol-
lowing the same procedure as in [2, Theorem 4].

An important point to be noted here is that the inter-
polation error that arises from constructing the filtered
output might affect the existence of a unique solution
of the BEIVSVF estimator according to Lemma 2, how-
ever, it does not affect the converging point of the estima-
tor. This means that, provided that the unique solution
exists and the algorithm converges, which is usually at-
tainable with a reasonable choice of the sampling period,
the converging point will correspond to the true param-
eter in a digital implementation of the algorithm with
ZOH, FOH or CT multisine inputs. This is contrary to
the intuitive belief that direct CT methods are only con-
sistent as the sampling period tends to zero. The above
discussion also applies to the SRIVC estimator [8], al-
though the SRIVC estimator has a stronger convergence
result as explained in Section 4.4.

4.3 On the Choice of λ for the SVF

In Statement 2 of Theorem 2, we have proven that Φ̄
in (40) is generically non-singular with respect to the
parameters of Als(p) and F (p) in order to show that
the unique converging point of the BEIVSVF estimator
corresponds to the true parameter. According to Defi-
nition 1, the generic non-singularity of Φ̄ implies that
Φ̄ is non-singular, and thus θ̄ = θ∗, for all selections of
F (p) except for some isolated cases. This means that, in
a practical situation, F (p) can be chosen to be almost
any stable polynomial with the correct order without af-
fecting the converging point of the estimator for a large
sample size. Defining F (p) to be in the form of (p/λ+1)n

in (5) is considered as one of the possible parameterisa-
tions in the parameter space.

At the converging point, the BEIVSVF estimator solves
the equation

N∑
k=1

ϕ̂f (tk)
Ā(p)

F (p)

(
y(tk)−

{
B̄(p)

Ā(p)
u(t)

}
t=tk

)
= 0.

(43)
The expression in (43) gives some insights into the choice
of F (p). On the one hand, when the bandwidth of 1/F (p)
is chosen to be much smaller than that of 1/Ā(p), the
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information content that the input and output contain
about the system will be greatly reduced, hence lead-
ing to poor estimates. On the other hand, if the band-
width of 1/F (p) is chosen to be much larger than that
of 1/Ā(p), the high frequency region of this filter will
have a much larger gain. This will in turn place more
emphasis on the model fit in the high frequency region
since the residual term in (43) is filtered by Ā(p)/F (p).
Thus, the bandwidth of 1/F (p) should be chosen to be
as close to 1/Ā(p) as possible (note that, asymptotically,
Ā(p) = A∗(p) since the estimator is consistent). Even
though the choice of F (p) does not affect the consistency
property of the estimator, the quality of the estimate can
deteriorate in a practical situation since only finite sam-
ples are considered, especially when the signal-to-noise
ratio is low. Hence, from the above discussion, the user
should exercise caution when choosing the hyperparam-
eter λ for constructing the prefilter 1/F (p), particularly
when the system transfer function contains zeros, as the
bandwidth of 1/A∗(p) may be much smaller than the
bandwidth of the system.

Therefore, the recommended choice of the denominator
polynomial of SVF is to select F (p) to be as close to
A∗(p) as possible. This is different to the common sug-
gestion given in the existing literature (see e.g. [1, p.
102]), which recommends the bandwidth of 1/F (p) to
be chosen closer to the bandwidth of the system.

4.4 Some Advantages and Trade-offs concerning the
BEIVSVF Estimator

One of the differences between the proposed BEIVSVF
estimator and the SRIVC estimator [23] is that the in-
strument and regressor vectors in the BEIVSVF estima-
tor are not updated iteratively. This means that the in-
verse of the modified normal matrix in the BEIVSVF al-
gorithm only needs to be computed once instead of being
repeatedly updated as in the SRIVC algorithm. While
preserving the consistency property, the BEIVSVF es-
timator is therefore more computationally efficient than
the SRIVC estimator.

The BEIVSVF estimator does not achieve a relatively
faster computation speed without any costs. A conse-
quence of the one-off computation of the modified nor-
mal matrix is that the BEIVSVF is not statistically effi-
cient under the output error model structure since its co-
variance matrix does not achieve the Crámer-Rao lower
bound in [10, Theorem 1]. In addition, as seen from the
expressions of (36) and (37) in Statement 3 of Theo-
rem 2, the eigenvalues of I−Q−1R not only depend on
the choice of the auxiliary modelBls(p)/Als(p), the SVF
filter 1/F (p) and the input signal u(t) but also on the as-
sumed intersample behaviour when discretising the filter
Ā(p)/F (p). Hence, all these factors may affect the local
convergence of the BEIVSVF estimator.

When comparing Statement 3 of Theorem 2 to the con-
vergence result of the SRIVC estimator [8, Theorem 1,
Statement 3], it can be seen that the SRIVC estimator
has a stronger convergence guarantee since it has been
shown [8] that

θSRIV C
j+1 = θ̄ + op(‖θSRIV C

j − θ̄‖),

that is, in the asymptotic case, the SRIVC algorithm
locally converges in one iteration. In the case of the
BEIVSVF estimator, we have traded off this guaran-
tee for local convergence with the simplicity of the al-
gorithm, i.e. the prefilters are fixed instead of being
updated iteratively inside the algorithm, which is the
condition that ensures the stronger convergence result.
In terms of the convergence rate, the SRIVC estima-
tor can be formulated as a Gauss-Newton type method
(see e.g. [21, Section 5.2]) with a non-symmetric Hessian
matrix due to the use of the instrument vector; how-
ever, the Hessian matrix is very close to being symmet-
ric near the converging point for large sample sizes and
small sampling periods. The large sample sizes ensure
that the parameters of the prefilter in the instrument
vector converges to the true parameters, whereas the
small sampling periods ensure that the interpolation er-
ror terms that arise from constructing the filtered output
during the SRIVC iterations are near zero. Hence, the
SRIVC estimator approximately possesses a quadratic
convergence rate. On the other hand, the convergence
for the BEIVSVF estimator is linear due to the non-zero
I−Q−1R term in (42), which gives a slower convergence
rate when high accuracy is desired [14].

5 Simulations

In this section, Monte Carlo (MC) simulations are per-
formed to provide empirical evidence to support the the-
oretical results developed in Sections 3 and 4. The sys-
tem is chosen to be

G(p) =
1

0.04p2 + 0.2p+ 1
,

where the true parameters are given by

θ∗ =
[

0.04 0.2 1
]>

.

The MC simulations are performed with two different
sampling periods. The signals in the first instance are
sampled at T = 0.1 s, which is equivalent to a sam-
pling frequency that is approximately 10 times the sys-
tem bandwidth, whereas those in the second instance
are sampled at T = 0.02 s. The system input is chosen
to be a ZOH multisine with angular frequencies 0.5, 2, 5
and 7 rad/s. The additive noise on the output is an
i.i.d. Gaussian sequence with a zero mean and a vari-
ance of 0.1. The consistency property of the IVSVF and
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BEIVSVF estimators is investigated by examining the
mean and variance of the estimates in an MC study as
the sample size, N , increases. The SRIVC estimator is
employed as a benchmark to the simulation results as it
has been proven to be consistent [8] and asymptotically
efficient [10] under the output error model structure. The
sample size,N , is varied from 500 to 106 in a logarithmic
scale, where a total of 50 different sample sizes are used.
Three hundred MC simulations are performed for each
value of N . The maximum iteration is set to 100 and the
tolerance ε set to 10−14 for the BEIVSVF and SRIVC
algorithms. The same termination condition is used for
the BEIVSVF and SRIVC algorithms as defined in (35).
The mean and variance for the two sampling periods as
a function of the number of samples are shown in Fig-
ures 1 to 5.
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Fig. 1. Mean of the estimated parameters (T = 0.1 s).

For the case of T = 0.1 s, it can be seen in Figure 1
that the mean of the IVSVF estimates does not con-
verge to the true parameters, which shows empirically
that the estimator is not consistent. On the other hand,
a zoomed-in version of Figure 1 shows that the mean
values of both the BEIVSVF and SRIVC estimates con-
verge to the true parameters in Figure 2. Given that
the variances of the estimates in Figure 3 are decreasing
with an increasing sample size as well as the fact that
the consistency property of the SRIVC estimator has al-
ready been confirmed previously [8], this then provides
empirical evidence to the consistency of the BEIVSVF
estimator.

Similar results can be observed in Figures 4 and 5, where
the sampling period is chosen to be T = 0.02 s, which is
equivalent to a sampling frequency that is 50 times faster
than the system bandwidth. Although the mean of the
IVSVF estimates are much closer to the true parameters
when fast sampling is used, a discrepancy between the
mean of the IVSVF estimates and the true parameters
can still be observed in Figure 4. It should be noted that
fast sampling may not be available in all practical situa-
tions due to equipment limitations and/or the nature of
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Fig. 2. Zoomed-in version of the mean of the estimated pa-
rameters (T = 0.1 s).
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Fig. 3. Variance of the estimated parameters (T = 0.1 s).

the systems being identified. Hence, the sampling period
should not be relied upon to reduce the bias in the es-
timates. The BEIVSVF and SRIVC estimators, on the
other hand, are still converging to the true parameters
with a decreasing variance.

The computation times of the BEIVSVF and SRIVC
estimators for the 15000 MC simulations (300 MC for
50 different sample sizes) for the two sampling periods
are displayed in Table 1. The simulations are performed
on a computer with an Intel Xenon 3.5GHz processor,
and the srivc function from the CONTSID toolbox is
used. It can be seen that the BEIVSVF algorithm is 2
to 3 times faster than the SRIVC algorithm under the
same simulations conditions while being able to achieve
similar statistical results.
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Fig. 4. Mean of the estimated parameters (T = 0.02 s).
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Fig. 5. Variance of the estimated parameters (T = 0.02 s).

Table 1
Simulation time of the BEIVSVF and SRIVC algorithms for
a total of 15000 MC runs.

Sampling periods T = 0.1 T = 0.02

BEIVSVF 7.62 hr 3.78 hr

SRIVC 15.91 hr 10.94 hr

6 Conclusion

In this paper, we have analysed the consistency of the
IVSVF estimator by taking into account the intersam-
ple behaviour of the input and output signals. It has
been found that the IVSVF estimator is not consistent
when only sampled input and output signals are avail-
able, even if the input intersample behaviour is exactly
known. This is due to the interpolation error that arises
from constructing the filtered output. The BEIVSVF

estimator has been proposed to remove the asymptotic
bias caused by this interpolation error and its consis-
tency property has been proven. The use of the proposed
estimator has also been discussed from a practical stand-
point. Monte Carlo simulations have been performed to
verify the consistency of the BEIVSVF estimator.
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